首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   2篇
  42篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1992年   1篇
  1985年   2篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有42条查询结果,搜索用时 0 毫秒
1.
SelB is a specialized translation factor that binds GTP and GDP and delivers selenocysteyl-tRNA (Sec-tRNA(Sec)) to the ribosome. By analogy to elongation factor Tu (EF-Tu), SelB is expected to control the delivery and release of Sec-tRNA(Sec) to the ribosome by the structural switch between GTP- and GDP-bound conformations. However, crystal structures of SelB suggested a similar domain arrangement in the apo form and GDP- and GTP-bound forms of the factor, raising the question of how SelB can fulfill its delivery function. Here, we studied the thermodynamics of guanine nucleotide binding to SelB by isothermal titration calorimetry in the temperature range between 10 and 25 °C using GTP, GDP, and two nonhydrolyzable GTP analogs, guanosine 5'-O-(γ-thio)triphosphate (GTPγS) and guanosine 5'-(β,γ-imido)-triphosphate (GDPNP). The binding of SelB to either guanine nucleotide is characterized by a large heat capacity change (-621, -467, -235, and -275 cal × mol(-1) × K(-1), with GTP, GTPγS, GDPNP, and GDP, respectively), associated with compensatory changes in binding entropy and enthalpy. Changes in heat capacity indicate a large decrease of the solvent-accessible surface area in SelB, amounting to 43 or 32 amino acids buried upon binding of GTP or GTPγS, respectively, and 15-19 amino acids upon binding GDP or GDPNP. The similarity of the GTP and GDP forms in the crystal structures can be attributed to the use of GDPNP, which appears to induce a structure of SelB that is more similar to the GDP than to the GTP-bound form.  相似文献   
2.
Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet‐tRNAfMet to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet‐tRNAfMet to the ribosome in a ternary complex, IF2·GTP·fMet‐tRNAfMet. By using rapid kinetic techniques, we show here that binding of IF2·GTP to the 30S ribosomal subunit precedes and is independent of fMet‐tRNAfMet binding. The ternary complex formed in solution by IF2·GTP and fMet‐tRNA is unstable and dissociates before IF2·GTP and, subsequently, fMet‐tRNAfMet bind to the 30S subunit. Ribosome‐bound IF2 might accelerate the recruitment of fMet‐tRNAfMet to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF‐Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.  相似文献   
3.
4.
The translation initiation efficiency of a given mRNA is determined by its translation initiation region (TIR). mRNAs are selected into 30S initiation complexes according to the strengths of the secondary structure of the TIR, the pairing of the Shine-Dalgarno sequence with 16S rRNA, and the interaction between initiator tRNA and the start codon. Here, we show that the conversion of the 30S initiation complex into the translating 70S ribosome constitutes another important mRNA control checkpoint. Kinetic analysis reveals that 50S subunit joining and dissociation of IF3 are strongly influenced by the nature of the codon used for initiation and the structural elements of the TIR. Coupling between the TIR and the rate of 70S initiation complex formation involves IF3- and IF1-induced rearrangements of the 30S subunit, providing a mechanism by which the ribosome senses the TIR and determines the efficiency of translational initiation of a particular mRNA.  相似文献   
5.
6.
Recently we shown that low doses (0.12-0.46 Gy) of (methyl-3H)-thymidine incorporated into human endothelial cells induce the accumulation cells in G2-phase of the cell cycle. The temperate doses of (1-6 Gy) gamma-rays 137Cs were less effective in the induction of the G2-block estimated by flow cytometry analysis of DNA content and in the induction of the chromosome aberrations (bridges and fragments in anaphase). The aim of this study was the comparative investigation of efficiency of beta-rays emitted 3H from 3H-thymidine and 3H2O by several of the cellular parameters. Here we shown that at the equal conditions of the incubation of the cells in medium with 3H2O induced the accumulation cells in S-phase without decreasing of the mitotic activity and without increasing of the chromosome aberrations level. Unlike from 3H2O the incubation of the cells with 3H-thymidine induced the accumulation cells in G2-phase with decrease of the mitotic activity and with increase of the chromosome aberrations level. Concurrent treatment cells with 3H-thymidine and thymidine abrogate these cellular effects of the 3H-thymidine. Inhibitor ATM-kinase caffeine abrogate as G2-block as S-phase block. These results suggest that the low-dose beta-radiation activates S-phase and G2-phase checkpoints requiring ATM-mediated signal transduction pathway. The factors, which impact on the efficiency of the internal and of the external sources of the irradiation, depend on theirs disposition in relation to radiosensitive target--DNA was discussed.  相似文献   
7.
8.
A study was made of the lethal and mutagenic effects on extracellular phage gamma of 5-3H-cytosine incorporated into DNA. The efficiencies of inactivation by incorporated 3H were equal for 5-3H-cytosine and [3H-methyl]-thymidine, but the yield of c-mutations for the former was 14 times higher. The lethal and mutagenic effects of incorporated 5-3H-cytosine did not depend on ung mutation of host cells which caused a deficiency in uracil-DNA-glycosylase. The mutagenic effect was not enhanced when SOS-repair system was induced by UV-radiation. The mutagenic effect of 5-3H-cytosine was associated with the modified mispairing bases but not with uracil residues.  相似文献   
9.
SelB is a specialized translation elongation factor that delivers selenocysteyl-tRNASec (Sec-tRNASec) to the ribosome. Here we show that Sec-tRNASec binds to SelB·GTP with an extraordinary high affinity (Kd = 0.2 pm). The tight binding is driven enthalpically and involves the net formation of four ion pairs, three of which may involve the Sec residue. The dissociation of tRNA from the ternary complex SelB·GTP·Sec-tRNASec is very slow (0.3 h−1), and GTP hydrolysis accelerates the release of Sec-tRNASec by more than a million-fold (to 240 s−1). The affinities of Sec-tRNASec to SelB in the GDP or apoforms, or Ser-tRNASec and tRNASec to SelB in any form, are similar (Kd = 0.5 μm). Thermodynamic coupling in binding of Sec-tRNASec and GTP to SelB ensures at the same time the specificity of Sec- versus Ser-tRNASec selection and rapid release of Sec-tRNASec from SelB after GTP cleavage on the ribosome. SelB provides an example for the evolution of a highly specialized protein-RNA complex toward recognition of unique set of identity elements. The mode of tRNA recognition by SelB is reminiscent of another specialized factor, eIF2, rather than of EF-Tu, the common delivery factor for all other aminoacyl-tRNAs, in line with a common evolutionary ancestry of SelB and eIF2.  相似文献   
10.
The lethal and mutagenic effects on phage lambdacI857 of 60Co gamma-rays and of decay of 3H incorporated into phage DNA both as 8-3H-deoxyadenosine and 8-3H-deoxyguanosine (using 8-3H-adenine as a labelled DNA precursor) were studied on four isogenic Escherichia coli strains: AB1157 M(+)Y(+) (wild type, mutM(+) mutY(+)), AB1157 M(-)Y(+) (mutM::kan mutY(+) mutant deficient in the formamidopyrimidine-DNA glycosylase MutM), AB1157 M(+)Y(-) (mutM(+) mutY mutant deficient in the A:G mismatch DNA glycosylase MutY), and AB1157 M(-)Y(-) (mutM::kan mutY double mutant deficient in both DNA glycosylases). The main products of transmutation component of 3H decay in position 8 of purine residues are 8-oxo-7, 8-dihydroadenine (8-oxoA) and 8-oxo-7,8-dihydroguanine (8-oxoG), the latter being responsible for the most part of the mutagenic effect. The lethal effects of both gamma-rays and tritium decay virtually did not depend on the repair phenotypes of the host strains used. Therefore, the MutM and MutY glycosylases are not involved in the repair of lethal DNA damages induced by ionizing radiation or by the transmutation component of 3H decay in purine residues of phage DNA. The efficiencies of mutagenic action of 3H-purines E(m) (frequencies of c-mutations per one 3H decay in phage genome) were 2.4-, 3.8- and 55-fold higher in the M(-)Y(+), M(+)Y(-) and M(-)Y(-) mutants, respectively, in comparison to the wild-type host. The mutagenic efficiencies E(m) for gamma-rays were nearly identical in the M(+)Y(+) and M(-)Y(+) hosts, but were increased 1.8- and 8.3-fold, respectively, in the M(+)Y(-) and M(-)Y(-) mutants. These data suggest that: (1) the MutY and MutM DNA glycosylases are important for prevention of mutations caused not only by spontaneous oxidation of guanine residues, but also by ionizing radiation or by decay of 3H incorporated into purine bases of DNA; (2) the MutY and MutM enzymes functionally cooperate in elimination of mutagenic damages induced by these agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号