首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  1999年   1篇
  1998年   2篇
排序方式: 共有27条查询结果,搜索用时 17 毫秒
1.
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7–Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4+ and CD8+ lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.  相似文献   
2.
Macrophage recognition of apoptotic cells depends on externalization of phosphatidylserine (PS), which is normally maintained within the cytosolic leaflet of the plasma membrane by aminophospholipid translocase (APLT). APLT is sensitive to redox modifications of its -SH groups. Because activated macrophages produce reactive oxygen and nitrogen species, we hypothesized that macrophages can directly participate in apoptotic cell clearance by S-nitrosylation/oxidation and inhibition of APLT causing PS externalization. Here we report that exposure of target HL-60 cells to nitrosative stress inhibited APLT, induced PS externalization, and enhanced recognition and elimination of "nitrosatively" modified cells by RAW 264.7 macrophages. Using S-nitroso-L-cysteine-ethyl ester (SNCEE) and S-nitrosoglutathione (GSNO) that cause intracellular and extracellular trans-nitrosylation of proteins, respectively, we found that SNCEE (but not GSNO) caused significant S-nitrosylation/oxidation of thiols in HL-60 cells. SNCEE also strongly inhibited APLT, activated scramblase, and caused PS externalization. However, SNCEE did not induce caspase activation or nuclear condensation/fragmentation suggesting that PS externalization was dissociated from the common apoptotic pathway. Dithiothreitol reversed SNCEE-induced S-nitrosylation, APLT inhibition, and PS externalization. SNCEE but not GSNO stimulated phagocytosis of HL-60 cells. Moreover, phagocytosis of target cells by lipopolysaccharide-stimulated macrophages was significantly suppressed by an NO. scavenger, DAF-2. Thus, macrophage-induced nitrosylation/oxidation plays an important role in cell clearance, and hence in the resolution of inflammation.  相似文献   
3.
The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear. Protoplasts transfected with PVX-GFP:TGBp2 or pRTL2-GFP:TGBp2 were treated with cycloheximide and the decline of GFP fluorescence was greater in virus-infected protoplasts than in pRTL2-GFP:TGBp2-transfected protoplasts. Thus, protein instability is enhanced in virus-infected protoplasts, which may account for the cytosolic and nuclear fluorescence during late stages of infection. Immunogold labeling and electron microscopy were used to further characterize the GFP:TGBp2-induced vesicles. Label was associated with the ER and vesicles, but not the Golgi apparatus. The TGBp2-induced vesicles appeared to be ER derived. For comparison, plasmids expressing GFP fused to TGBp3 were transfected to protoplasts, bombarded to tobacco leaves, and studied in transgenic leaves. The GFP:TGBp3 proteins were associated mainly with the ER and did not cause obvious changes in the endomembrane architecture, suggesting that the vesicles reported in GFP:TGBp2 studies were induced by the PVX TGBp2 protein. In double-labeling studies using confocal microscopy, fluorescence was associated with actin filaments, but not with Golgi vesicles. We propose a model in which reorganization of the ER and increased protein degradation is linked to plasmodesmata gating.  相似文献   
4.
It has been demonstrated that vasoactive intestinal polypeptide, epidermal growth factor, and chronic activation of phosphatidylinositol 3-kinase can protect prostate cancer cells from apoptosis; however, the signaling pathways that they use and molecules that they target are unknown. We report that vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase activate independent signaling pathways that phosphorylate the proapoptotic protein BAD. Vasoactive intestinal polypeptide operated via protein kinase A, epidermal growth factor required Ras activity, and effects of phosphatidylinositol 3-kinase were predominantly mediated by Akt. BAD phosphorylation was critical for the antiapoptotic effects of each signaling pathway. None of these survival signals was able to rescue cells that express BAD with mutations in phosphorylation sites, whereas knockdown of BAD expression with small hairpin RNA rendered cells insensitive to apoptosis. Taken together, these results identify BAD as a convergence point of several antiapoptotic signaling pathways in prostate cells.  相似文献   
5.
Repertoire composition, quantity, and qualitative functional ability are the parameters that define virus-specific T-cell responses and are linked with their potential to control infection. We took advantage of the segregation of different hepatitis B virus (HBV) genotypes in geographically and genetically distinct host populations to directly analyze the impact that host and virus variables exert on these virus-specific T-cell parameters. T-cell responses against the entire HBV proteome were analyzed in a total of 109 HBV-infected subjects of distinct ethnicities (47 of Chinese origin and 62 of Caucasian origin). We demonstrate that HBV-specific T-cell quantity is determined by the virological and clinical profiles of the patients, which outweigh any influence of race or viral diversity. In contrast, HBV-specific T-cell repertoires are divergent in the two ethnic groups, with T-cell epitopes frequently found in Caucasian patients seldom detected in Chinese patients. In conclusion, we provide a direct biological evaluation of the impact that host and virus variables exert on virus-specific T-cell responses. The discordance between HBV-specific CD8 T-cell repertoires present in Caucasian and Chinese subjects shows the ability of HLA micropolymorphisms to diversify T-cell responses and has implications for the rational development of therapeutic and prophylactic vaccines for worldwide use.  相似文献   
6.

Brucella as intracellular pathogen requires a coordinate interaction between Th1 subset of gamma interferon-secreting CD4 T cells and CD8 T cells for optimal protective immunity. It was previously recognized that L7/L12 as T cell-reactive antigen from the pathogen. On other hand, Omp25 was found as another antigen to provide protection against the Brucella infection by eliciting both Th1 and Th2 type of immune responses in mice. Here, we analyzed the prophylactic and therapeutic efficacy of a divalent fusion protein (rL7/L12-Omp25) comprising these two promising immunogens of Brucella in the presence of murine IFN-gamma in mice against B. abortus 544 challenge. rIFN-gamma with rL7/L12-Omp25 resulted in superior immune response when compared to the animal vaccine strain B. abortus S19. The vaccine candidate caused dominance of IgG1 over IgG2a and upregulated cytokine secretion (IFN-gamma, TNF-α, and IL-10) among immunized mice. Moreover, the antigen in combination with murine IFN-gamma elicited stronger cell-mediated immune response among the immunized animals when compared to standard vaccine (S19). The registered log protection unit among challenged mice with B. abortus 544 pathogen was 2.16, p = 0.0001 when rL7/L12-Omp25 was administered alone and 2.4, p = 0.0001 when it was administered along with rIFN-gamma. However, the molecule upon administration with murine IFN-gamma imparted very minimal or no therapeutic effect against brucellosis. To conclude, our study demonstrates the potential of rL7/L12-Omp25 as an immunogen of prospective and efficient prophylaxis as it is capable of eliciting both cell-mediated and humoral immune responses against brucellosis.

  相似文献   
7.
Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells.  相似文献   
8.
Hepatitis A virus (HAV), an atypical member of the Picornaviridae, grows poorly in cell culture. To define determinants of HAV growth, we introduced a blasticidin (Bsd) resistance gene into the virus genome and selected variants that grew at high concentrations of Bsd. The mutants grew fast and had increased rates of RNA replication and translation but did not produce significantly higher virus yields. Nucleotide sequence analysis and reverse genetic studies revealed that a T6069G change resulting in a F42L amino acid substitution in the viral polymerase (3Dpol) was required for growth at high Bsd concentrations whereas a silent C7027T mutation enhanced the growth rate. Here, we identified a novel determinant(s) in 3Dpol that controls the kinetics of HAV growth.Hepatitis A virus (HAV) is an atypical member of the Picornaviridae that replicates poorly in cell culture and generally does not cause cytopathic effect (CPE). The HAV positive-strand RNA genome of about 7.5 kb is encapsidated in a 27- to 32-nm icosahedral shell (12). The HAV genome contains a long open reading frame (ORF) that codes for a polyprotein of approximately 250 kDa, which undergoes co- and posttranslational processing by the virus-encoded protease 3Cpro into structural (VP0, VP3, and VP1-2A) and nonstructural proteins (11, 13, 14, 18). VP0 undergoes structural cleavage into VP2 and VP4, and an unknown cellular protease cleaves the VP1-2A precursor (9, 23).HAV replicates inefficiently in cell culture and in general establishes persistent infections (3, 4, 7, 8) without causing CPE. However, some strains of HAV that replicate quickly can induce cell death (5, 19, 27). Due to the growth limitations, experimentation with HAV is difficult and the biology of this virus is poorly understood. To facilitate genetic studies, we recently introduced a blasticidin (Bsd) resistance gene at the 2A-2B junction of wild-type (wt) HAV (16). Bsd, an antibiotic that blocks translation in prokaryotes and eukaryotes and thus affects HAV translation, is inactivated by the Bsd-deaminase encoded in the Bsd resistance gene (15). Cells infected with the wt HAV construct carrying the Bsd resistance gene (HAV-Bsd) grew in the presence of Bsd. We have recently used the wt HAV-Bsd construct to select human hepatoma cell lines that support the stable growth of wt HAV (16) and to establish simple and rapid neutralization and virus titration assays (17). In this study, we developed a genetic approach to study determinants of HAV replication based on the selection of HAV-Bsd variants grown under increased concentrations of Bsd. We hypothesized that by increasing the concentration of Bsd, we would select HAV variants that grew better and allowed the survival of persistently infected cells at higher concentrations of the antibiotic. We also reasoned that we would need a robust HAV-Bsd replication system to provide enough Bsd-deaminase for cell survival. Therefore, we used attenuated HAV grown in rhesus monkey fetal kidney FRhK4 cells as an experimental system because (i) the virus grows 100-fold better in this system than wt HAV in human hepatoma cells (16), and (ii) it already contains cell culture-adapting mutations (3, 4, 7, 8) that are likely to accumulate during passage of wt HAV at high concentrations of Bsd and confound our analysis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号