首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2006年   1篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
A study of bacterial surface oligosaccharides were investigated among different strains of Neisseria gonorrhoeae to correlate structural features essential for binding to the MAb 2C7. This epitope is widely expressed and conserved in gonococcal isolates, characteristics essential to an effective candidate vaccine antigen. Sample lipooligosaccharides (LOS), was prepared by a modification of the hot phenol-water method from which de-O-acetylated LOS and oligosaccharide (OS) components were analyzed by ES-MS-CID-MS and ES-MSnin a triple quadrupole and an ion trap mass spectrometer, respectively. Previously documented natural heterogeneity was apparent from both LOS and OS preparations which was admixed with fragments induced by hydrazine and mild acid treatment. Natural heterogeneity was limited to phosphorylation and antenni extensions to the alpha-chain. Mild acid hydrolysis to release OS also hydrolyzed the beta(1-->6) glycosidic linkage of lipid A. OS structures were determined by collisional and resonance excitation combined with MS and multistep MSn which provided sequence information from both neutral loss, and nonreducing terminal fragments. A comparison of OS structures, with earlier knowledge of MAb binding, enzyme treatment, and partial acid hydrolysis indicates a generic overlapping domain for 2C7 binding. Reoccurring structural features include a Hepalpha(1-->3)Hepbeta(1-->5)KDO trisaccharide core branched on the nonreducing terminus (Hep-2) with an alpha(1-->2) linked GlcNAc (gamma-chain), and an alpha-linked lactose (beta-chain) residue. From the central heptose (Hep-1), a beta(1-->4) linked lactose (alpha-chain), moiety is required although extensions to this residue appear unnecessary.   相似文献   
4.
An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals.  相似文献   
5.
6.
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: (1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; (2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance “free energy contribution entropy contribution” (as well as “information contribution informational entropy contribution”), from negative to positive values. At the inversion moment, the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this concept, the origin-of-life process on the early Earth took place in oscillating hydrothermal medium. The process was taking two successive stages: (1) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids, and simple amino acids, or their precursors, within the temperature interval of 100–300?°C (prebiotic stage); (2) nonspontaneous synthesis of sugars, ATP, and nucleic acids started at the inversion moment under the temperature 70–100?°C (biotic stage). Macro and microfluctuations of thermodynamic and physicochemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems (Kompanichenko, 2012). Conditions in potential hydrothermal medium for the origin of life were explored on the examples of several hydrothermal systems in Kamchatka peninsula. Temperature of water in hot springs ranges from?<?60 to 98?°C, in the bore holes water-steam temperature varies from?<?100 to 239?°C, and pressure from?<?1 to 35 bars at the wellheads; pH is within the interval 2.5–9.0. Pressure monitoring at the depth 950?meters in the borehole No. 30 (Mutnovsky field) has revealed high-amplitude (up to 1–2 bars) irregular macrofluctuations and low-amplitude quite regular microoscillations of pressure (amplitudes 0.1–0.3 bars). Hydrocarbons, lipid precursors, and simple amino acids are available in the fluid. The lifeless condensate of water-steam mixture (temperature 108–175?°C) contains aromatic hydrocarbons, n-alkanes, ketons, alcohols, and aldehydes. In addition to those, cycloalkanes, alkenes, dietoxyalkanes, naphtenes, fatty acids, ethyl ethers of fatty acids, and monoglycerides have been detected in hot solutions inhabited by thermophiles and hyperthermophiles (temperature 70–98?°C). According to Mukhin et al. (1979), glycine of probably abiotic origination was detected in lifeless condensate.  相似文献   
7.
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).  相似文献   
8.
The propensity to associate or aggregate is one of the characteristic properties of many nonnative proteins. The aggregation of proteins is responsible for a number of human diseases and is a significant problem in biotechnology. Despite this, little is currently known about the effect of self-association on the structural properties and conformational stability of partially folded protein molecules. G-actin is shown to form equilibrium unfolding intermediate in the vicinity of 1.5 M guanidinium chloride (GdmCl). Refolding from the GdmCl unfolded state is terminated at the stage of formation of the same intermediate state. An analogous form, known as inactivated actin, can be obtained by heat treatment, or at moderate urea concentration, or by the release of Ca(2+). In all cases actin forms specific associates comprising partially folded protein molecules. The structural properties and conformational stability of inactivated actin were studied over a wide range of protein concentrations, and it was established that the process of self-association is rather specific. We have also shown that inactivated actin, being denatured, is characterized by a relatively rigid microenvironment of aromatic residues and exhibits a considerable limitation in the internal mobility of tryptophans. This means that specific self-association can play an important structure-forming role for the partially folded protein molecules.  相似文献   
9.
Basic provisions of an original concept of biosphere germination are enumerated. Formation of primary microorganisms and communities is considered from the viewpoint of crucial transformations in compartments of organic matter that led to the emergence of fundamental properties of biological systems. The necessary initial condition was the transition of organic microsystems in the bifurcation state which maintained continuing dynamic processes in them. The decisive stage of transformation of microsystems in protobionts (initial forms of life) comprised their acquiring ability to concentrate free energy and information at the expense of fortified reactions to external influences, exerted by the fluctuating hydrothermal environment. The primary biosphere was formed during the evolution of microorganism types in the direction probionts-progenotes-prokaryotes.  相似文献   
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号