首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
1.
Structural changes of the cytoskeleton of the frog urinary bladder granular cells were examined during low and high water permeability of the epithelium. A tight connection of the microfilaments and microtubules with vacuolar membranes and a great increase in the number of microtubules during a stimulated water flow was shown using different electron microscopic methods. Two populations of microtubules were discovered, respectively, with different diameter and different rate of stability. It is suggested that the thicker microtubules while interacting with actin microfilaments through associated electron dense globules may fulfil the transport function in the cell.  相似文献   
2.
A study was made of the structural changes in different organoids of enterocytes of the rat small intestine at "rest" and during lipid absorption using ultrathin sections, impregnation with Ur-Pb-Cu, and continuous impregnation with OsO4. With the latter technique a specific canalicular system was found in the enterocytes, which we failed to observe on ultrathin sections. During lipid absorption the canalicular system underwent fragmentation. The vesicules on the trans-surface of the Golgi apparatus were enlarged, and the number of flattened cisterns was significantly lower. The changes in cellular organoids and their interrelations observed in the present study support the earlier hypothesis of the resynthesis of triglycerides within the enterocytes, the formation of chylomicrons and their transfer into the intercellular space.  相似文献   
3.
The ultrastructural peculiarities of mitochondria-rich cells of the frog urinary bladder are analysed using three electron microscopic methods: ultrathin sections, scanning electron microscopy, freeze fracture. The mitochondria and tubular and vesicular structures are most abundant in the apical region of cytoplasm. The P-face (PF) of the apical plasma membrane is characterized by the presence of rod-shaped intramembrane particles (IMP), whereas the E-face (EF) possesses complementary pits. Depending on the distribution density of the rod-shaped IMP, three types of cells are described. The apical plasma membrane has an invert distribution of the globular IMP: a great quantity of IMP on the EF and a few particles on the PF. This structure of the apical plasma membrane is supposed to correlate with its very low water permeability. Using filipin as a marker of cholesterol localization, it has been shown that the mitochondria-rich cell apical membrane contains more cholesterol than that of the granular cells. The nature of the rod-shaped IMP and their role in the transmembrane ion transport have been discussed.  相似文献   
4.
The present study deals with an analysis of specific traits of cell vacuolation induced by water flow and ADH. During incubation of frog urinary bladders in Ringer's solution diluted 2-fold, the water content of the bladder wall increased by an average of 19%. In case of ADH-stimulated water flow the water content increased by an average of 15.7%. Cell swelling induced by hypotonic conditions on the serosal side resulted in a drastic decrease of the response to the hydroosmotic action of ADH. Electron microscopy revealed significant differences between cells hydrated in the above conditions. Two-fold hypotonicity of the serosal solution caused a slight swelling of all types of cells accompanied by a narrowing of intercellular spaces. With ADH stimulation of water transport (at maximal water movement) granular cells were characterized by the presence of irregularly shaped giant vacuoles with processes. The limiting membranes of the vacuoles were closely connected with microtubules and microfilaments. The electron microscopic study of these cells by the freeze-substitution method revealed, in addition to giant vacuoles, a highly complex system of microtubules 35-40 nm in diameter. A morphological similarity was observed between the vacuolar systems of these granular cells and the contractile vacuole complex of protozoans. Possible mechanisms for the participation of giant vacuoles, electron-dense canaliculi, microtubules and microfilaments in transcellular water flow across epithelium are discussed.  相似文献   
5.
The analysis of ultrastructural characteristics of mitochondria-rich cells of the frog urinary bladder with the aid of three electron microscopic methods (ultrathin sections, scanning electron microscopy, freeze-fracture) has been done. The inverted distribution of globular intramembrane particles (IMP) in apical membranes reflecting their low water permeability has been shown. The typical feature of plasma membranes of mitochondria-rich cells is the presence of rod-shaped IMP on the P-face of the apical membrane and complementary pits on the EF. There is a correlation between the quantity of rod-shaped IMP and the rate of ionic transport. The analysis of cholesterol contents in plasma membranes of epithelial cells of the frog urinary bladder has shown that the apical membranes of mitochondria-rich cells contain more cholesterol than those of granular cells; the great pat of cholesterol is localized in the cytoplasmic leaflet.  相似文献   
6.
The electron microscope study of L-cells treated with 1 mM lanthanum has shown an increased amount of gap-like junctions and a decreased number of tight junctions compared to the norm. No damage in the plasma membrane structure and other cell organoids was observed. This may suggest that following the above treatment, the amplified intercellular exchange is associated with the increase in the quantity of intercellular highly permeable junctions. In this case lanthanum may serve as a membrane structure modificator. This effect must be taken into account when the electron microscopists use the lanthanum label for studying specialized intercellular junctions.  相似文献   
7.
Facultative pathogens Serratia grimesii are able to invade eukaryotic cells where they have been found in vacuoles and free in the cytoplasm (Efremova et al., 2001; Bozhokina et al., 2011). However, efficiency of this invasion is low, and the mechanisms of the invasion related to the initial steps of the process are not known. In the present study, we have increased the invasion efficiency by a 24-h-incubation of HeLa cells with N-acetylcysteine (NAC) preceding the infection. In the NAC-pretreated cells, two modes of S. grimesii to enter HeLa cells were observed. In the most cases, the penetration of S. grimesii into the cell was consistent with the “zipper mechanism”, which first step involves specific interaction of bacterial invasin with a host cell surface receptor. However, in some cases, bacteria were trapped by filopodia probably induced by injected bacterial proteins that trigger the bacterial uptake process, as described in the “trigger mechanism” of invasion. To clarify whether two different mechanisms or a predominant one operate during S. grimesii invasion, further elucidation of bacterial and cellular factors involved in the bacteria-host cell interaction should be performed.  相似文献   
8.
The early 90s have brought us a discovery of a new class of membrane proteins--aquaporins with a function of transmembrane water channels. Being genetically closed proteins aquaporins are members of a large family of channel-forming proteins called MIPs (major intrinsic proteins). All aquaporins, except AQP4, are mercury-sensitive. Many aquaporins have been cloned and identified. Polyclonal antibodies grown against some of them promoted numerous studies of aquaporin localization and distribution in animal and plant tissues. Up to the present, 10 and 2 aquaporins have been described in mammalian and amphibian epithelial tissues, respectively. One of described aquaporins, AQP2, whose localization is confined to kidney collecting duct principal cells, has been found to be a hormone-depending water channel. The insertion of apical vesicles bearing AQP2 was shown to be regulated by vasopressin, meanwhile all other aquaporins are inserted into the plasma membrane constitutively. There is a vast evidence showing that the integrity of microtubules is necessary for both pathways of aquaporin insertion. AQP2 is important for normal kidney functioning and AQP2 mutations cause water-balance disorders. On the contrary, the AQP1 mutations are not accompanied by any evident clinical pathology. This review is focused on a discussion of the data so far available on aquaporin distribution in different animal tissues.  相似文献   
9.
Morpho-physiological characteristics of the transport of cyclic nonapeptide arginine vasopressin (AVP) across the rat intestinal epithelium was studied in experiments in vitro. A partial absorption of physiologically active AVP was followed when filling the isolated intestinal lumen by hormone solution. By methods of immunoelectron and immunofluorescence confocal microscopy, using polyclonal anti-AVP antibodies, cytoplasmic localization of AVP label was shown in enterocytes. The AVP label was also observed in the intercellular space in the basal area of epithelium. No label was revealed in the intercellular junctions, and no predominant label accumulation was found in any cytoplasmic structures of the epithelial cells. The obtained results are considered as evidence for the transcellular pathway of partial AVP absorption in rat small intestine.  相似文献   
10.
To elucidate the mechanism of glucose absorption at high substrate concentrations, we studied structural and ultrastructural peculiarities of enterocytes arranged at different levels along the intestinal villus. The preparations were obtained from an isolated segment of the rat small intestine after its perfusion with maltose solutions with both low (25 mM) and high (100 mM) concentrations, respectively. Under conditions of chronic experiment at high substrate concentration, an enlargement of intercellular clefts, indicating glucose absorption, occurred in deeper areas of the villus. Besides, also in chronic experiment, we studied kinetics of maltose hydrolysis and derived glucose absorption in the isolated segment of the rat small intestine after its perfusion with maltose at superhigh (up to 200 mM) initial concentrations. Based on these data, a conclusion is made that active transport is the main mechanism of absorption of glucose derived from maltose hydrolysis, operating both at low disaccharide concentrations, and in the range of its superhigh (up to 200 mM) concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号