首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   6篇
  2013年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Thirty-two partial phytochrome sequences from algae, mosses, ferns, gymnosperms, and angiosperms (11 of them newly released ones from our laboratory) were analyzed by distance and characterstate approaches (PHYLIP, TREECON, PAUP). In addition, 12 full-length sequences were analyzed. Despite low bootstrap values at individual internal nodes, the inferred trees (neighbor joining, Fitch, maximum parsimony) generally showed similar branching orders consistent with other molecular data. Lower plants formed two distinct groups. One basal group consisted of Selaginella, Equisetum, and mosses; the other consisted of a monophyletic cluster of frond-bearing pteridophytes. Psilotum was a member of the latter group and hence perhaps was not, as sometimes suggested, a close relative of the first vascular plants. The results further suggest that phytochrome gene duplication giving rise to a- and b- and later to c-types may have taken place within seedfern genomes. Distance matrices dated the separation of mono- and dicotyledons back to about 260 million years before the present (Myr b.p.) and the separation of Metasequoia and Picea to a fossil record-compatible value of 230 Myr B.P. The Ephedra sequence clustered with the c- or a-type and Metasequoia and Picea sequences clustered with the b-type lineage. The paleoherb Nymphaea branched off from the c-type lineage prior to the divergence of mono- and dicotyledons on the a- and b-type branches. Sequences of Piper (another paleoherb) created problems in that they branched off from different phytochrome lineages at nodes contradicting distance from the inferred trees' origin. Correspondence to: H.A.W. Schneider-Poetsch  相似文献   
2.
3.
Genetic manipulation of glycine decarboxylation   总被引:15,自引:0,他引:15  
The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory CO(2) within mitochondria. Although controversial, there is significant evidence that this process, by the relocation of glycine decarboxylase within the leaves from the mesophyll to the bundle-sheath, contributed to the evolution of C(4) photosynthesis. In this review, some aspects of current knowledge about glycine decarboxylase and serine hydroxymethyltransferase and the role of these enzymes in metabolism, about the corresponding genes and their expression as well as about mutants and anti-sense plants related to these genes or processes will be summarized and discussed. From a comparison of the available information about the number and organization of GDC and SHMT genes in the genomes of Arabidopsis thaliana and Oryza sativa it appears that these and, possibly, other genes related to photorespiration, are similarly organized even in only very distantly related angiosperms.  相似文献   
4.
5.
The putative α-galactosidase gene HvSF11 of barley, previously shown to be expressed during dark induced senescence, is expressed in the growing/elongating zone of primary foliage leaves of barley. The amino acid sequence deduced from the full length HvSF11 cDNA contains a hydrophobic signal sequence at the N-terminus. Phylogenetic relationship of the HvSF11 encoded barley α-galactosidase to other α-galactosidases revealed high homology with the α-galactosidase encoded by the gene At5g08370 from Arabidopsis thaliana. We have isolated two independent heterozygous At5g08370 T-DNA insertion mutants from Arabidopsis thaliana, both of which have a higher number of rosette leaves with a curly surface leaf morphology and delayed flowering time in comparison to wildtype plants. Localization of the Arabidopsis α-galactosidase protein via GUS-tag revealed that the protein is associated with the cell wall. This result was confirmed by immunological detection of the orthologous barley protein in a protein fraction derived from cell walls of barley leaves. It is concluded that the α-galactosidase proteins from barley and Arabidopsis might fulfill an important role in leaf development by functioning in cell wall loosening and cell wall expansion.
  相似文献   
6.
D-GLYCERATE 3-KINASE (GLYK; EC 2.7.1.31) catalyzes the concluding reaction of the photorespiratory C2 cycle, an indispensable ancillary metabolic pathway to the photosynthetic C3 cycle that enables land plants to grow in an oxygen-containing atmosphere. Except for GLYK, all other enzymes that contribute to the C2 cycle are known by their primary structures, and the encoding genes have been identified. We have purified and partially sequenced this yet missing enzyme from Arabidopsis thaliana and identified it as a putative kinase-annotated single-copy gene At1g80380. The exclusive catalytic properties of the gene product were confirmed after heterologous expression in Escherichia coli. Arabidopsis T-DNA insertional knockout mutants show no GLYK activity and are not viable in normal air; however, they grow under elevated CO2, providing direct evidence of the obligatory nature of the ultimate step of the C2 cycle. The newly identified GLYK is both structurally and phylogenetically distinct from known glycerate kinases from bacteria and animals. Orthologous enzymes are present in other plants, fungi, and some cyanobacteria. The metabolic context of GLYK activity in fungi and cyanobacteria remains to be investigated.  相似文献   
7.
8.
Plant ABC proteins--a unified nomenclature and updated inventory   总被引:5,自引:0,他引:5  
The ABC superfamily comprises both membrane-bound transporters and soluble proteins involved in a broad range of processes, many of which are of considerable agricultural, biotechnological and medical potential. Completion of the Arabidopsis and rice genome sequences has revealed a particularly large and diverse complement of plant ABC proteins in comparison with other organisms. Forward and reverse genetics, together with heterologous expression, have uncovered many novel roles for plant ABC proteins, but this progress has been accompanied by a confusing proliferation of names for plant ABC genes and their products. A consolidated nomenclature will provide much-needed clarity and a framework for future research.  相似文献   
9.
Null-mutations of the Arabidopsis FKBP-like immunophilin TWISTED DWARF1 (TWD1) gene cause a pleiotropic phenotype characterized by reduction of cell elongation and disorientated growth of all plant organs. Heterologously expressed TWD1 does not exhibit cis-trans-peptidylprolyl isomerase (PPIase) activity and does not complement yeast FKBP12 mutants, suggesting that TWD1 acts indirectly via protein-protein interaction. Yeast two-hybrid protein interaction screens with TWD1 identified cDNA sequences that encode the C-terminal domain of Arabidopsis multidrug-resistance-like ABC transporter AtPGP1. This interaction was verified in vitro. Mapping of protein interaction domains shows that AtPGP1 surprisingly binds to the N-terminus of TWD1 harboring the cis-trans peptidyl-prolyl isomerase-like domain and not to the tetratrico-peptide repeat domain, which has been shown to mediate protein-protein interaction. Unlike all other FKBPs, TWD1 is shown to be an integral membrane protein that colocalizes with its interacting partner AtPGP1 on the plasma membrane. TWD1 also interacts with AtPGP19 (AtMDR1), the closest homologue of AtPGP1. The single gene mutation twd1-1 and double atpgp1-1/atpgp19-1 (atmdr1-1) mutants exhibit similar phenotypes including epinastic growth, reduced inflorescence size, and reduced polar auxin transport, suggesting that a functional TWD1-AtPGP1/AtPGP19 complex is required for proper plant development.  相似文献   
10.
Multifunctionality of plant ABC transporters – more than just detoxifiers   总被引:20,自引:0,他引:20  
The ABC-transporter superfamily is one of the largest protein families, and members can be found in bacteria, fungi, plants and animals. The first reports on plant ABC transporters showed that they are implicated in detoxification processes. The recent completion of the genomic sequencing of Arabidopsis thaliana (L.) Heynh. [Arabidopsis Genome Initiative (2000) Nature 408:796-815] showed that Arabidopsis contains more than 100 ABC-type proteins; 53 genes code for so-called full-size transporters, which are large proteins of about 150 kDa consisting of two hydrophobic and two hydrophilic domains. The large number of genes in the MDR/MRP and PDR5-like sub-clusters and the strong sequence homology found in many cases suggest functional redundancy. One reason for the high number of genes can be attributed to the duplication of large segments of Arabidopsis chromosomes. Recent results indicate that the function of this protein family is not restricted to detoxification processes. Plant ABC transporters have been demonstrated to participate in chlorophyll biosynthesis, formation of Fe/S clusters, stomatal movement, and probably ion fluxes; hence they may play a central role in plant growth and developmental processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号