首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   9篇
  159篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   8篇
  2013年   9篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2008年   12篇
  2007年   10篇
  2006年   8篇
  2005年   8篇
  2004年   2篇
  2003年   7篇
  2002年   13篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   1篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
  1988年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
Noble crayfish (Astacus astacus L.), the most highly valued freshwater crayfish in Europe, is threatened due to a long-term population decline caused mainly by the spread of crayfish plague. Reintroduction of the noble crayfish into restored waters is a common practice but the geographic and genetic origin of stocking material has rarely been considered, partially because previous genetic studies have been hampered by lack of nuclear gene markers with known inheritance. This study represents the first large scale population genetic survey of the noble crayfish (633 adults from 18 locations) based on 10 newly developed microsatellite markers. We focused primarily on the Baltic Sea area (Estonia, Finland and Sweden) where the largest proportion of the remaining populations exists. To allow comparisons, samples from the Black Sea catchment (the Danube drainage) were also included. Two highly differentiated population groups were identified corresponding to the Baltic Sea and the Black Sea catchments, respectively. The Baltic Sea catchment populations had significantly lower genetic variation and private allele numbers than the Black Sea catchment populations. Within the Baltic Sea area, a clear genetic structure was revealed with population samples corresponding well to their geographic origin, suggesting little impact of long-distance translocations. The clear genetic structure strongly suggests that the choice of stocking material for re-introductions and supplemental releases needs to be based on empirical genetic knowledge.  相似文献   
2.
Sperm competition and uncertainty of paternity hamper the evolution of male parental care. Thus, maternal care predominates in most taxa. What if males can, however, limit cuckoldry by guarding the eggs postmating? Here, we show that this provides a reason to reconsider an old and nowadays rather discredited hypothesis: that external fertilization is associated with male care because the parent who releases its gametes first can depart leaving the other in a “cruel bind,” having to care for the offspring. In our model, protection of paternity provides an additional incentive for the male to stay associated with its young. When we then assume that offspring survive better if guarded, paternity protection proves enough to kick‐start the evolution of male‐only parental care from a scenario with no care. This fits with data from fishes, where male‐only care is associated with external fertilization, whereas female‐only care almost always evolves after an initial transition to internal fertilization. Our model unifies disparate hypotheses regarding parental care roles and provides support for the idea that care roles can be influenced by sex differences in selection to be physically close to the offspring, including selection that is initially not based on offspring survival.  相似文献   
3.
Paternity protection and the acquisition of multiple mates select for different traits. The consensus from theoretical work is that mate‐guarding intensifies with an increasing male bias in the adult sex ratio (ASR). A male bias can thus lead to male monogamy if guarding takes up the entire male time budget. Given that either female‐ or male‐biased ASRs are possible, why is promiscuity clearly much more common than male monogamy? We address this question with two models, differing in whether males can assess temporal cues of female fertility. Our results confirm the importance of the ASR: guarding durations increase with decreasing female availability and increasing number of male competitors. However, several factors prevent the mating system from switching to male monogamy as soon as the ASR becomes male biased. Inefficient guarding, incomplete last male sperm precedence, any mechanism that allows sperm to fertilize eggs after the male's departure, and (in some cases) the unfeasibility of precopulatory guarding all help explain cases where promiscuity exists on its own or alongside temporally limited mate‐guarding. Shortening the window of fertilization shifts guarding time budgets from the postcopulatory to the precopulatory stage.  相似文献   
4.
Polyandry, by elevating sexual conflict and selecting for reduced male care relative to monandry, may exacerbate the cost of sex and thereby seriously impact population fitness. On the other hand, polyandry has a number of possible population-level benefits over monandry, such as increased sexual selection leading to faster adaptation and a reduced mutation load. Here, we review existing information on how female fitness evolves under polyandry and how this influences population dynamics. In balance, it is far from clear whether polyandry has a net positive or negative effect on female fitness, but we also stress that its effects on individuals may not have visible demographic consequences. In populations that produce many more offspring than can possibly survive and breed, offspring gained or lost as a result of polyandry may not affect population size. Such ecological ‘masking’ of changes in population fitness could hide a response that only manifests under adverse environmental conditions (e.g. anthropogenic change). Surprisingly few studies have attempted to link mating system variation to population dynamics, and in general we urge researchers to consider the ecological consequences of evolutionary processes.  相似文献   
5.
Many hypotheses have been proposed to explain multiple mating in females. One of them is bet hedging, that is avoiding having no or very few offspring in any given generation, rather than maximizing the expected number of offspring. However, within-generation bet hedging is generally believed to be an unimportant evolutionary force, except in very small populations. In this study, we derive predictions of the bet-hedging hypothesis for a case in which local insect populations are often small, offspring performance varies, for example, due to inbreeding depression, and the groups of gregarious larvae have to exceed a threshold size before they are likely to survive throughout the larval stage. These conditions exist for populations of the Glanville fritillary butterfly (Melitaea cinxia), potentially making bet-hedging benefits larger than usual. We observed matings in a field cage, which allowed detailed observations under practically natural conditions, and analyzed genetic paternity of egg clutches laid by females under direct observation. The egg-laying and survival patterns are in line with the predictions, supporting the hypothesis that multiple mating in M. cinxia presents a rare case of within-generation bet hedging.  相似文献   
6.
We examine the evolutionary stability of year-round residency in territorial populations, where breeding sites are a limiting resource. The model links individual life histories to the population-wide competition for territories and includes spatial variation in habitat quality as well as a potential parent-offspring conflict over territory ownership. The general form of the model makes it applicable to the evolution of dispersal, migration, partial migration, and delayed dispersal (offspring retention). We show that migration can be evolutionarily stable only if year-round residency in a given area would produce a sink population, where mortality exceeds reproduction. If this applies to a fraction of the breeding habitat only, partial migration is expected to evolve. In the context of delayed dispersal, habitat saturation has been argued to form an ecological constraint on independent breeding, which favors offspring retention and cooperative breeding. We show that habitat saturation must be considered as a dynamic outcome of birth, death, and dispersal rates in the population, rather than an externally determined constraint. Although delayed dispersal often associates with intense competition for territories, life-history traits have direct effects on stable dispersal strategies, which can often override the effect of habitat saturation. As an example, high survival of floaters selects against delayed dispersal, even though it increases the number of competitors for each breeding vacancy (the "habitat saturation factor"). High survival of territory owners, by contrast, generally favors natal philopatry. We also conclude that spatial variation in habitat quality only rarely selects for delayed dispersal. Within a population, however, offspring retention is more likely in high-quality territories.  相似文献   
7.
When several individuals simultaneously provide for offspring, as in families, the effort of any one individual will depend on the efforts of the other family members. This conflict of interest among family members is made more complicated by their relatedness because relatives share genetic interest to some degree. The conflict resolution will also be influenced by the differences in reproductive value between breeders and helpers. Here, we calculate evolutionarily stable provisioning efforts in families with up to two helpers. We explicitly consider that the behavioral choices are made in a life-history context, and we also consider how group sizes change dynamically; this affects, for example, average relatedness among group members. We assume two different scenarios: intact families in which the breeder is 100% monogamous and stepfamilies in which the breeder shifts mate between breeding events. The average relatedness among family members is allowed to evolve in concert with changes in provisioning effort. Our model shows that an individual's provisioning effort is not easy to predict from either its relatedness to the offspring or its reproductive value. Instead, it is necessary to consider the inclusive fitness effect of provisioning, which is determined by a combination of relatedness, reproductive value, and the reproductive value of the offspring.  相似文献   
8.
Field studies of many vertebrates show that some individuals (floaters) do not defend territories even when there is space for them to do so. We show that the evolutionarily stable strategy (ESS) for the threshold territory quality at which floating takes place is that which maximizes the size of the floating population (but not the total population, breeding population, or reproductive output). The ESS is solved separately for two assumptions: whether individuals wait to occupy a single territory or multiple territories and whether queuing rules are strict or if all waiting individuals are equally likely to obtain the next territory. The four combinations of these assumptions all give the same evolutionarily stable population size of both floaters and breeders. At the ESS, only territories with expected lifetime reproductive success (LRS) exceeding 1 should be occupied, which introduces a limit to ideal habitat selection. The behavioral decision to float alters the shape of the density-dependent response, reduces the equilibrium population size, and affects the response of the population to habitat loss. Specifically, the floater: breeder ratio is directly related to average breeding habitat quality, and the floater population size will decrease more than the breeding population size if better than average quality habitat is lost.  相似文献   
9.
Species with paternal care show less exaggerated sexual ornamentation than those in which males do not care, although direct benefits from paternal care can vastly exceed the indirect benefits of mate choice. Whether condition-dependent handicaps can signal parenting ability is controversial. The good-parent process predicts the evolution of honest signals of parental investment, whereas the differential-allocation model suggests a trade-off between the attractiveness of a mate and his care-provisioning. I show that both alternatives can arise from optimal allocations to advertisement, parental investment and future reproductive value of the male, and that the male''s marginal fitness gain from multiple matings determines which option should apply. The marginal gain is diminishing if opportunities for polygyny or extra-pair copulations are limited. Advertisement is then expected to be modest and honest, indicating genetic quality and condition-dependent parental investment simultaneously. Increasing marginal gains are likely to be related to cases where genetic quality has a significant influence on offspring fitness. This alternative leads to differential allocation with stronger advertisement, more frequent extra-pair copulations, and diminished male care. Reliability is also reduced if allocation benefits have thresholds, e.g. if there is a minimum body condition required for survival, or if females use a polygyny-threshold strategy of mate choice.  相似文献   
10.
Positive allometry of secondary sexual traits (whereby larger individuals have disproportionally larger traits than smaller individuals) has been called one of the most pervasive and poorly understood regularities in the study of animal form and function. Its widespread occurrence is in contrast with theoretical predictions that it should evolve only under rather special circumstances. Using a combination of mathematical modeling and simulations, here we show that positive allometry is predicted to evolve under much broader conditions than previously recognized. This result hinges on the assumption that mating success is not necessarily zero for males with the lowest trait values: for example, a male who lacks horns or antlers might still be able to copulate if encountering an unguarded female. We predict the strongest positive allometry when males typically (but not always) compete in large groups, and when trait differences decisively determine the outcome of competitive interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号