首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   4篇
  2022年   1篇
  2018年   3篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   12篇
  2003年   4篇
  2002年   2篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1987年   1篇
  1985年   2篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.  相似文献   
2.
3.
4.
5.
Protein-disulfide isomerase (PDI) is a modular polypeptide consisting of four domains, a, b, b', and a'. It is a ubiquitous protein folding catalyst that in addition functions as the beta-subunit in vertebrate collagen prolyl 4-hydroxylase (C-P4H) alpha(2)beta(2) tetramers. We report here that point mutations in the primary peptide substrate binding site in the b' domain of PDI did not inhibit C-P4H assembly. Based on sequence conservation, additional putative binding sites were identified in the a and a' domains. Mutations in these sites significantly reduced C-P4H tetramer assembly, with the a domain mutations generally having the greater effect. When the a or a' domain mutations were combined with the b' domain mutation I272W tetramer assembly was further reduced, and more than 95% of the assembly was abolished when mutations in the three domains were combined. The data indicate that binding sites in three PDI domains, a, b', and a', contribute to efficient C-P4H tetramer assembly. The relative contributions of these sites were found to differ between Caenorhabditis elegans C-P4H alphabeta dimer and human alpha(2)beta(2) tetramer formation.  相似文献   
6.
Methylene ureas (MU) are slow-release nitrogen fertilizers degraded in soil by microbial enzymatic activity. Improved utilization of MU in agricultural production requires more knowledge about the organisms and enzymes responsible for its degradation. A Gram-negative, MU-degrading organism was isolated from a soil in Sacramento Valley, California. The bacterium was identified as Agrobacterium tumefaciens (recently also known as Rhizobium radiobacter) using both genotypic and phenotypic characterization. The pathogenic nature of the organism was confirmed by a bioassay on carrot disks. The MU-hydrolyzing enzyme (MUase) was intracellular and was induced by using MU as a sole source of nitrogen. The bacterial growth was optimized in NH4Cl, urea, or peptone, whereas the production and specific activity of MUase were maximized with either NH4Cl or urea as a nitrogen source. The result has a practical significance, demonstrating a potential to select for this plant pathogen in soils fertilized with MU.  相似文献   
7.
The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.  相似文献   
8.
9.
Three hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) regulate the HIFs by hydroxylating prolines at two separate sites in the oxygen-dependent degradation domain (ODDD) of their alpha subunits. We compared in vitro hydroxylation by purified recombinant human HIF-P4Hs of 19-20- and 35-residue peptides corresponding to the two sites in HIF-alphas and purified recombinant HIF-1alpha and HIF-2alpha ODDDs of 248 and 215 residues. The increase in the length of peptides representing the C-terminal site from 19 to 20 to 35 residues reduced the K(m) values to 90-800 nm, i.e. to 0.7-11% of those for the shorter peptides, whereas those representing the N-terminal site were 10-470 microm, i.e. 10-135%. The K(m) values of HIF-P4H-1 for the recombinant HIF-alpha ODDDs were 10-20 nm, whereas those of HIF-P4H-2 and -3 were 60-140 nm, identical values being found for the wild-type HIF-1alpha ODDD and its N site mutant. The K(m) values for the C site mutant were about 5-10 times higher but only 0.2-3% of those for the 35-residue N site peptides, and this marked difference suggested that the HIF-P4Hs may become bound first to the C-terminal site of an ODDD and that this binding may enhance subsequent binding to the N-terminal site. The K(m) values of HIF-P4H-2 for oxygen determined with the HIF-1alpha ODDD and both its mutants as substrates were all about 100 microm, being 40% of those reported for the three HIF-P4Hs with a 19-residue peptide. Even this value is high compared with tissue O(2) levels, indicating that HIF-P4Hs are effective oxygen sensors.  相似文献   
10.
Integrins are potential targets for the development of antiinflammatory agents. Here we develop a novel high-throughput assay by allowing a chemical library to compete with phage display peptide binding and identify a novel small-molecule ligand to the leukocyte-specific alpha(M)beta(2) integrin. The identified thioxothiazolidine-containing compound, IMB-10, had an unexpected activity in that it stabilized binding of alpha(M)beta(2) to its endogenous ligands proMMP-9 and fibrinogen. Single amino acid substitutions in the activity-regulating C-terminal helix and the underlying region in the ligand-binding I domain of the integrin suppressed the effect of IMB-10. A computational model indicated that IMB-10 occupies a distinct cavity present only in the activated form of the integrin I domain. IMB-10 inhibited alpha(M)beta(2)-dependent migration in vitro and inflammation-induced neutrophil emigration in vivo. Stabilization of integrin-mediated adhesion by a small molecule is a novel means to inhibit cell migration and may have a utility in treatment of inflammatory diseases involving leukocyte recruitment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号