首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   13篇
  2023年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   8篇
  2014年   3篇
  2013年   10篇
  2012年   13篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   12篇
  2007年   17篇
  2006年   14篇
  2005年   13篇
  2004年   15篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   8篇
  1993年   6篇
  1992年   5篇
  1991年   9篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   6篇
  1982年   4篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   5篇
  1974年   4篇
排序方式: 共有285条查询结果,搜索用时 78 毫秒
1.
2.
The proto-oncogene c-mos was expressed during differentiation of the human monocytic cell line U937 into macrophages. To investigate a possible role of the mos oncogene, we introduced the v-mos gene under an inducible promoter, MT-I, into U937 cells. The v-mos transformed cells expressed mos mRNA at an amount proportional to the concentration of Zn2+ ions. The induction of the v-mos gene caused growth inhibition and macrophage differentiation in these cells. The differentiation of v-mos transformed monocytes into macrophages required continuous expression of the v-mos gene. The extent of expression of phenotypic characteristics of macrophages, such as phagocytosis, cell surface antigens and typical morphology, depends on the amount of mos mRNA present. We were therefore able to demonstrate that the expression of only one oncogene, mos, determines monocyte differentiation into macrophages.  相似文献   
3.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   
4.
A Nakano  M Kondo  K Taniyama  S Tanaka 《Life sciences》1988,42(25):2657-2662
gamma-Aminobutyric acid (GABA) content was measured, and the release of GABA was studied in the synovial membrane of the rat knee joint. GABA content of the synovial membrane was 20.1 nmol/g tissue. Ten days after unilateral dissection of the sciatic nerve, femoral nerve or both nerves, the GABA contents of the ipsilateral membrane were 13.8, 14.6 and 7.8 nmol/g tissue, respectively. High K+ evoked the Ca2+-dependent release of [3H] GABA from the synovial membranes of intact rats preloaded with [3H] GABA, but did not evoke release from the membrane ipsilateral to the dissection of both sciatic and femoral nerves. Evoked release of [3H] GABA was obtained in the synovial membrane preloaded with [3H] GABA in the presence of beta-alanine, but not in the presence of 2,4-L-diaminobutyric acid. These results indicate that GABA is present in the neuronal elements of the synovial membrane of the rat knee joint.  相似文献   
5.
Two forms of superoxide dismutase, CuZn-SOD and MnSOD, have been investigated in the kidneys of streptozotocin-induced diabetic rats using both radio-immunoassay and immunoenzyme staining. The rats were killed 2, 8 and 12 weeks after the induction of diabetes mellitus and the kidneys excised. Two weeks after the induction of diabetes, the kidneys were hypertrophied because of the proliferation of renal tubular epithelium. However, the total CuZnSOD content of the kidneys did not increase and, because of the epithelial proliferation, the CuZnSOD concentration in each proximal tubular cell was decreased. Armanni-Ebstein lesions were found in the distal tubules 8 and 12 weeks after the induction of diabetes. The cells in these lesions were intensely stained for CuZnSOD, suggesting an adaptive response to the enhanced oxidative stress. The MnSOD staining in the thick ascending limbs of Henle's loops was enhanced in the diabetic kidneys, while that in the cortical tubules was unaltered. MnSOD was assumed to increase in response to hypermetabolism associated with the proliferation of renal tubules. This was most marked in the cells which were rich in mitochondria, again suggesting an adaptive response to enhanced oxidative stress induced by diabetes mellitus. The glomeruli of both the diabetic and control groups were not stained for SODs, and no significant microscopic change was found even 12 weeks after the induction of diabetes mellitus.  相似文献   
6.
7.
Three rat monoclonal antibodies against mouse peritoneal macrophages in different stages of activation were produced and characterized. One of these (AcM.1) bound to activated macrophages induced by pyran and Corynebacterium parvum, but not to resident and thioglycollate medium- (TGC) or proteose peptone- (PP) elicited macrophages. On the contrary, the antigen identified by MM9 monoclonal antibody was expressed only on resident and TGC- or PP-elicited macrophages. WE15 monoclonal antibody, on the other hand, reacted with all of the macrophages described above. In the assay for function, AcM.1 and WE15 monoclonal antibodies in the presence of complement (C) abolished the capacity of activated macrophages induced by pyran or C. parvum but not the capacity of killer T cells and natural killer (NK) cells to kill tumor target cells. On the other hand, MM9 and anti-Thy-1.2 monoclonal antibodies in the presence of C, as expected, did not affect the cytotoxicity of activated macrophages. However, none of the four monoclonal antibodies in the absence of C had any blocking effect on macrophage-mediated cytotoxicity. AcM.1 antibody reacted with two polypeptides with m.w. of 70,000 and 45,000 on pyran-activated macrophages; however, the antigens recognized by WE15 and MM9 have not been determined yet. These results indicate that the three rat monoclonal antibodies define different antigens present on macrophages at different stages of activation for tumor cytotoxicity, and that these antibodies should prove to be useful probes for analyzing the mechanism of activation of macrophages for tumor cytotoxicity.  相似文献   
8.
Summary To quantitate the developmental changes in selenium-dependent cellular glutathione peroxidase during the perinatal period, tissue sections from foetal (day 12 to day 22) and neonatal (day 6) rats were stained immunohistochemically using specific polyclonal antiserum. The intensity of the staining was quantified by fluorescence microscopy image analysis. There was a general trend of enriched glutathione peroxidase in the epithelial linings and metabolically active sites. Significant fluorescence was detected in cardiomyocytes, hepatocytes, renal tubular epithelium, bronchiolar epithelium and intestinal epithelium at day 15. The intensity increased in a stepwise manner therafter. The overall increase in the intensity of staining in the heart, liver, kidneys, lungs and intestine was 1.5-, 2.3-, 1.6-, 1.7- and 3.0-fold, respectively. The phase of most rapid increase occurred during the foetal period in the liver, intestine and heart. In the kidneys and lungs, glutathione peroxidase increased significantly during foetal life, and to a similar extent postnatally. These results suggest that the intracellular H2O2-scavenging system develops during the foetal period as an essential mechanism for living under atmospheric oxygen conditions. The late development observed in the kidneys and lungs is consistent with the relative biological immaturity of these organs in full-term neonates.  相似文献   
9.
Abstract: We identified and characterized 125I-endothelin-1 (125I-ET-1) binding sites in tumor capillaries isolated from human glioblastomas, using the quantitative receptor autoradiographic technique with pellet sections. Quantification was done using the computerized radioluminographic imaging plate system. High-affinity ET receptors were localized in capillaries from glioblastomas and the surrounding brain tissues (KD = 4.7 ± 1.0 × 10?10 and 1.6 ± 0.3 × 10?10M, respectively; Bmax = 161 ± 38 and 140 ± 37 fmol/mg, respectively; mean ± SEM, n = 5). BQ-123, a selective antagonist for the ETA receptor, potently competed for 125I-ET-1 binding to sections of the microvessels with IC50 values of 5.1 ± 0.3 and 5.1 ± 1.5 nM, and 10?6M BQ-123 displaced 84 and 58% of ET binding to capillaries from tumors and brains, respectively. In addition, competition curves obtained in the presence of increasing concentrations of ET-3 showed two components (IC50 = 5.7 ± 2.5 × 10?10 and 1.4 ± 0.2 × 10?6M for tumor microvessels, 1.8 ± 0.6 × 10?10 and 1.1 ± 0.3 × 10?6M for brain microvessels, respectively). Our results indicate that (a) the method we used is simple and highly sensitive for detecting and characterizing various receptors in tumor capillaries, especially in the case of a sparse specimen, and (b) capillaries in glioblastomas express specific high-affinity ET binding sites, candidates for biologically active ET receptors, which predominantly belong to the ETA subtype.  相似文献   
10.
The human gene encoding the mutual signal-transducing subunit (-chain) of granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5 receptor complexes has been mapped to chromosome 22q13.1 by the fluorescence in situ hybridization method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号