首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   13篇
  53篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2003年   1篇
  2001年   6篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1982年   1篇
  1980年   2篇
  1977年   2篇
  1973年   2篇
  1972年   1篇
  1968年   2篇
  1955年   1篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
1.
The mechanism by which a protein integrates posttranslationally into a membrane can involve the composition of the membrane itself, domains within the inserting polypeptide, and a number of associating proteins. Some integral membrane proteins do not accumulate to normal levels when certain pigments are deficient, and this has been interpreted to mean that such proteins may be rapidly degraded when not in a correct complex. Alternatively, pigments could facilitate the movement of some proteins from an aqueous to a lipid environment. To determine whether chlorophyll is absolutely required for the membrane integration of the light-harvesting chlorophyll-binding protein (LHCP) of chloroplast thylakoid membranes, we have expressed LHCP in Escherichia coli that lacks photosynthetic pigments. LHCP is targeted to the bacterial inner membrane by the addition of a bacterial signal peptide and cannot be extracted from these membranes by NaOH, NaBr, or Na2HCO3 but is extracted by 0.2% Triton X-100. Treatment of isolated right-side-out and inside-out bacterial inner membrane vesicles with trypsin reveals that only the amino terminus of LHCP is exposed on the cytoplasmic face, and the remaining portion of the protein is inaccessible. Treatment of the inside-out vesicles with trypsin followed by alkaline extraction shows that LHCP is intrinsic to the membrane and is not anchored solely by the bacterial signal peptide. Chlorophyll, therefore, is not required for LHCP to integrate into a membrane, but in the absence of these pigments this process is observed to be inefficient.  相似文献   
2.
Most repeat units of rDNA in Drosophila virilis are interrupted in the 28S rRNA coding region by an intervening sequence about 10 kb in length; uninterrupted repeats have a length of about 11 kb. We have sequenced the coding/intervening sequence junctions and flanking regions in two independent clones of interrupted rDNA, and the corresponding 28S rRNA coding region in a clone of uninterrupted rDNA. The intervening sequence is terminated at both ends by a direct repeat of a fourteen nucleotide sequence that is present once in the corresponding region of an intact gene. This is a phenomenon associated with transposable elements in other eukaryotes and in prokaryotes, and the Drosophila rDNA intervening sequence is discussed in this context. We have compared more than 200 nucleotides of the D. virilis 28S rRNA gene with sequences of homologous regions of rDNA in Tetrahymena pigmentosa (Wild and Sommer, 1980) and Xenopus laevis (Gourse and Gerbi, 1980): There is 93% sequence homology among the diverse species, so that the rDNA region in question (about two-thirds of the way into the 28S rRNA coding sequence) has been very highly conserved in eukaryote evolution. The intervening sequence in T. pigmentosa is at a site 79 nucleotides upstream from the insertion site of the Drosophila intervening sequence.  相似文献   
3.
4.
5.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   
6.
K K Bernd  B D Kohorn 《Genetics》1998,149(3):1293-1301
Mutations within the signal sequence of cytochrome f (cytf) in Chlamydomonas inhibit thylakoid membrane protein translocation and render cells nonphotosynthetic. Twenty-seven suppressors of the mutant signal sequences were selected for their ability to restore photoautotrophic growth and these describe six nuclear loci named tip1 through 6 for thylakoid insertion protein. The tip mutations restore the translocation of cytf and are not allele specific, as they suppress a number of different cytf signal sequence mutations. Tip5 and 2 may act early in cytf translocation, while Tip1, 3, 4, and 6 are engaged later. The tip mutations have no phenotype in the absence of a signal sequence mutation and there is genetic interaction between tip4, and tip5 suggesting an interaction of their encoded proteins. As there is overlap in the energetic, biochemical and genetic requirements for the translocation of nuclear and chloroplast-encoded thylakoid proteins, the tip mutations likely identify components of a general thylakoid protein translocation apparatus.  相似文献   
7.
8.
9.
番茄和鸡蛋果叶片中可提取的SOD活性不受低温的影响。在电泳谱带上SOD主同工酶带被氰化物而不被低温抑制,次同工酶带在低温下不稳定,且活性很低,它的变化不影响总的SOD活性。一些冷敏感植物叶片中CAT活性被低温抑制,而H_2O_3水平在低温下稳定或有增加,这可能使毒性更强的羟基离子(OH·)易于形成。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号