首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2021年   2篇
  2019年   1篇
  2016年   2篇
  2014年   4篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
排序方式: 共有38条查询结果,搜索用时 828 毫秒
1.
Partial nucleotide sequences of the large subunit of ribulose-1,5-bisphosphate carboxylase (rubisco) gene (1333 base pairs: about 90% of the gene) from several seed plants were determined. Phylogenetic trees based on amino acid sequences were inferred by using the neighbor joining and maximum likelihood methods. The results indicate (1) monophyly of gnetum group (Ephedra, Gnetum, Welwitschia), (2) monophyly of extant gymnosperms containing gnetum group, which contradicts the results of morphological data.  相似文献   
2.
Molecular phylogeny in the Lardizabalaceae   总被引:1,自引:0,他引:1  
Eleven species belonging to seven genera in the Lardizabalaceae were analyzed in terms of restriction fragment length polymorphism (RFLP) of chloroplast DNA and the sequence of the chloroplast gene,rbcL, of Lardizabalaceae and its related families. Phylogenetic trees inferred from parsimony, neighbor joining and maximum likelihood methods based on RFLP data showed that two South American genera,Boquila andLardizabala, and three East Asian genera,Akebia, Holboellia andStauntonia are closely related to each other, respectively. On the other hand, the parsimony, neighbor joining and maximum likelihood trees constructed using sequence data of therbcL gene showed thatAkebia, Stauntonia, Boquila andLardizabala clustered as(((Akebia, Stauntonia), Boquila), Lardizabala). This difference may be attributable to fewer informative sites inrbcL genes than in RFLP in this family.Decaisnea diverges at the very base of the Lardizabalaceae.  相似文献   
3.
4.
During development of the chicken gizzard, a thick layer of undifferentiated cells (mesenchymal cells) is constructed, and the cells differentiate into smooth muscle cells or connective tissues. We found that the differentiation of smooth muscle cells occurred first near the outer surface of the gizzard and the differentiated area spread to the inside of the gizzard. Therefore, we assumed that the differentiation of most of the smooth muscle cells in the gizzard is induced by differentiated smooth muscle itself. When undifferentiated cells from gizzard of 7-day-old embryo (Hamburger and Hamilton's stages 26-27) were cultured on a coverglass coated with extract of gizzard that contained differentiated smooth muscle cells, the cells attached to the coverglass and differentiated into smooth muscle cells. On the other hand, extract of gizzard from 7-day-old embryo did not induce the differentiation of smooth muscle cells, though it induced the attachment of cells. We found that activity for the differentiation of smooth muscle cells appeared when differentiated smooth muscle cells appeared in developing gizzard. Gizzard contained higher activity for the differentiation of smooth muscle cells than the other tissues. Transforming growth factor-beta (TGF-beta), which induces the differentiation of vascular smooth muscle cells, did not induce the differentiation of smooth muscle cells in gizzard, though extract of aorta induced the differentiation of smooth muscle cells in gizzard. The results obtained here support evidence that the differentiation of most of the smooth muscle cells in gizzard is induced by a self-catalytic mechanism in which differentiated smooth muscle itself induces the differentiation of smooth muscle cells.  相似文献   
5.
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.  相似文献   
6.
A transient genetic transformation system was established for a chlorarachniophyte alga, Lotharella amoebiformis K. Ishida et Y. Hara. We first isolated sequences that contain a putative promoter for a RUBISCO SSU (rbcS) gene and a terminator for another copy of rbcS gene from L. amoebiformis. With those promoter and terminator sequences, we developed two expression vectors, pLaRGus and pLaRGfp, which code uidA and egfp genes, respectively. The cells were then transformed with each vector using a microparticle bombardment system. When the cells were transformed with the pLaRGus, β‐glucuronidase (GUS) staining dyed several cells blue. Green fluorescent protein (GFP) fluorescence was observed in the cells transformed with pLaRGfp. The highest transient transformation efficiency, 35 per 2 × 107 cells, was detected from the GUS staining. This study demonstrates that two reporter genes are expressed in L. amoebiformis cells when rbcS promoter and terminator are used. The conditions of transformation were also optimized. This is the first report of successful genetic transformation in chlorarachniophyte algae.  相似文献   
7.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   
8.

Background

DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system.

Results

With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region.

Conclusions

With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.  相似文献   
9.
Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN) of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF) visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR) via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP) from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay) in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods). Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号