首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   15篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1971年   1篇
  1951年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
A genomic expression library of P.falciparum has been differentially screened with a number of immune sera. The response of 9 clones to the various sera is presented, together with the DNA sequence encoding the epitopes. All but one clone are extremely A+T rich and unlike the other P.falciparum epitopes described, are not composed of amino acid repeats. One clone, which responds specifically with a protective serum, has been analysed in detail. The epitope is carried on a 160kd antigen which is transcribed from a single gene to give a protein expressed in all of the erythrocytic forms. DNA sequence of this clone reveals it to have more than one open reading frame, only one of which is transcribed in the blood stages. The possible significance of the other open readings frames is discussed.  相似文献   
2.
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.  相似文献   
3.

Background

Associations between lifetime traumatic event (LTE) exposures and subsequent physical ill-health are well established but it has remained unclear whether these are explained by PTSD or other mental disorders. This study examined this question and investigated whether associations varied by type and number of LTEs, across physical condition outcomes, or across countries.

Methods

Cross-sectional, face-to-face household surveys of adults (18+) were conducted in 14 countries (n = 38, 051). The Composite International Diagnostic Interview assessed lifetime LTEs and DSM-IV mental disorders. Chronic physical conditions were ascertained by self-report of physician''s diagnosis and year of diagnosis or onset. Survival analyses estimated associations between the number and type of LTEs with the subsequent onset of 11 physical conditions, with and without adjustment for mental disorders.

Findings

A dose-response association was found between increasing number of LTEs and odds of any physical condition onset (OR 1.5 [95% CI: 1.4–1.5] for 1 LTE; 2.1 [2.0–2.3] for 5+ LTEs), independent of all mental disorders. Associations did not vary greatly by type of LTE (except for combat and other war experience), nor across countries. A history of 1 LTE was associated with 7/11 of the physical conditions (ORs 1.3 [1.2–1.5] to 1.7 [1.4–2.0]) and a history of 5+ LTEs was associated with 9/11 physical conditions (ORs 1.8 [1.3–2.4] to 3.6 [2.0–6.5]), the exceptions being cancer and stroke.

Conclusions

Traumatic events are associated with adverse downstream effects on physical health, independent of PTSD and other mental disorders. Although the associations are modest they have public health implications due to the high prevalence of traumatic events and the range of common physical conditions affected. The effects of traumatic stress are a concern for all medical professionals and researchers, not just mental health specialists.  相似文献   
4.
5.
For the first time in human history, more than half of the world''s population lives in urban areas and this is projected to increase to two-thirds by 2030. This increased urbanity of the world''s population has substantial public health implications. Nearly a century of research has shown higher risk of mental disorder among persons living in urban versus rural areas. Epidemiologic research has documented that associations between particular features of the urban environment, such as concentrated disadvantage, residential segregation and social norms, contribute to the risk of mental illness. We propose that changes in DNA methylation may be one potential mechanism through which features of the urban environment contribute to psychopathology. Recent advances in animal models and human correlation studies suggest DNA methylation as a promising mechanism that can explain how the environment “gets under the skin.” Aberrant DNA methylation signatures characterize mental disorders in community settings. Emerging evidence of associations between exposure to features of the environment and methylation patterns may lead toward the identification of mechanisms that explain the link between urban environments and mental disorders. Importantly, evidence that epigenetic changes are reversible offers new opportunities for ameliorating the impact of adverse urban environments on human health.Key words: urban environment, mental disorders, DNA methylation, epigenetics, posttraumatic stress disorder, depressionThe 20th century has been characterized by the world-wide movement of populations from rural to urban areas. For the first time in human history, more than half of the world''s population lives in urban areas and this is projected to increase to two-thirds by 2030. The movement of populations to urban environments is probably the most important demographic shift in the past century. In particular, the increased urbanity of the world''s population has substantial public health implications. A body of research has long shown that there are different burdens of disease and disability in urban vs. non-urban areas and more recent work has linked specific features of the urban environment to particular health indicators (for reviews of the literature about urban health see refs. 1 and 2).Some of the more promising work in this area concerns research that has shown relations between urbanity and mental disorders. There is more than a century of work that has shown higher risk of most mental disorders among persons living in urban versus rural areas.38 Early research proposed several factors that may explain this association including selective migration and social disorganization.3 For example, it has been proposed that persons within disadvantaged areas may have a more difficult time building and sustaining supportive social relationships, therefore increasing susceptibility to mental illness. Subsequent work has shown associations between particular features of the urban environment and risk of mental illness. Living in poorer urban neighborhoods is associated with greater risk of new episodes of depression compared to living in richer neighborhoods, even when accounting for individual income or exposure to stressful or adverse circumstances.6,9,10 Living in neighborhoods characterized by residential racial segregation is associated with a greater risk of depression and anxiety, compared to living in less segregated neighborhoods.11 Other evidence suggests that neighborhood collective efficacy and norms are associated with the risk of substance use disorders12 and suicide attempts,13 again when taking into account individual experiences.Coincident with the growing number of studies that have demonstrated links between features of the urban environment and mental health, there has been an increase in work that has sought to understand the mechanisms underlying these epidemiologic observations. In particular, there is an emerging interest in identifying biologic explanations that may clarify the link between features of the urban environment and individual mental health. Existing research has documented a role for changes in immune function,14 gene-environment interactions15 and psychological mechanisms,16 among others, that may explain the links between the urban environment and mental health. This paper adds to this growing field and proposes that changes in DNA methylation may be one potential mechanism through which features of the urban environment contribute to psychopathology.  相似文献   
6.
The balanced action of both pre- and postsynaptic organizers regulates the formation of neuromuscular junctions (NMJ). The precise mechanisms that control the regional specialization of acetylcholine receptor (AChR) aggregation, guide ingrowing axons and contribute to correct synaptic patterning are unknown. Synaptic activity is of central importance and to understand synaptogenesis, it is necessary to distinguish between activity-dependent and activity-independent processes. By engineering a mutated fetal AChR subunit, we used homologous recombination to develop a mouse line that expresses AChR with massively reduced open probability during embryonic development. Through histological and immunochemical methods as well as electrophysiological techniques, we observed that endplate anatomy and distribution are severely aberrant and innervation patterns are completely disrupted. Nonetheless, in the absence of activity AChRs form postsynaptic specializations attracting motor axons and permitting generation of multiple nerve/muscle contacts on individual fibers. This process is not restricted to a specialized central zone of the diaphragm and proceeds throughout embryonic development. Phenotypes can be attributed to separate activity-dependent and -independent pathways. The correct patterning of synaptic connections, prevention of multiple contacts and control of nerve growth require AChR-mediated activity. In contrast, myotube survival and acetylcholine-mediated dispersal of AChRs are maintained even in the absence of AChR-mediated activity. Because mouse models in which acetylcholine is entirely absent do not display similar effects, we conclude that acetylcholine binding to the AChR initiates activity-dependent and activity-independent pathways whereby the AChR modulates formation of the NMJ.  相似文献   
7.
Acetylcholine receptors (AChRs) mediate synaptic transmission at the neuromuscular junction, and structural and functional analysis has assigned distinct functions to the fetal (alpha2beta(gamma)delta) and adult types of AChR (alpha2beta(epsilon)delta). Mice lacking the epsilon-subunit gene die prematurely, showing that the adult type is essential for maintenance of neuromuscular synapses in adult muscle. It has been suggested that the fetally and neonatally expressed AChRs are crucial for muscle differentiation and for the formation of the neuromuscular synapses. Here, we show that substitution of the fetal-type AChR with an adult-type AChR preserves myoblast fusion, muscle and end-plate differentiation, whereas it substantially alters the innervation pattern of muscle by the motor nerve. Mutant mice form functional neuromuscular synapses outside the central, narrow end-plate band region in the diaphragm, with synapses scattered over a wider muscle territory. We suggest that one function of the fetal type of AChR is to ensure an orderly innervation pattern of skeletal muscle.  相似文献   
8.
Romano-Ward syndrome (RWS), the autosomal dominant form of the congenital long QT syndrome, is characterised by prolongation of the cardiac repolarisation process associated with ventricular tachyarrhythmias of the torsades de pointes type. Genetic studies have identified mutations in six ion channel genes, KCNQ1, KCNH2, SCN5A, KCNE1 and KCNE2 and the accessory protein Ankyrin-B gene, to be responsible for this disorder. Single-strand conformation polymorphism (SSCP) analysis and subsequent DNA sequence analysis have identified a KCNQ1 mutation in a family that were clinically conspicuous due to several syncopes and prolonged QTc intervals in the ECG. The mutant subunit was expressed and functionally characterised in the Xenopus oocyte expression system. A novel heterozygous missense mutation with a C to T transition at the first position of codon 343 (CCA) of the KCNQ1 gene was identified in three concerned family members (QTc intervals: 500, 510 and 530 ms, respectively). As a result, proline 343 localised within the highly conserved transmembrane segment S6 of the KCNQ1 channel is replaced by a serine. Co-expression of mutant (KCNQ1-P343S) and wild-type (KCNQ1) cRNA in Xenopus oocytes produced potassium currents reduced by approximately 92%, while IKs reconstitution experiments with a combination of KCNQ1 mutant, wild-type and KCNE1 subunits yielded currents reduced by approximately 60%. A novel mutation (P343S) identified in the KCNQ1 subunit gene of three members of a RWS family showed a dominant-negative effect on native IKs currents leading to prolongation of the heart repolarisation and possibly increases the risk of malign arrhythmias with sudden cardiac death.  相似文献   
9.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号