首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  61篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
During the period of COVID-19, the occurrences of mucormycosis in immunocompromised patients have increased significantly. Mucormycosis (black fungus) is a rare and rapidly progressing fungal infection associated with high mortality and morbidity in India as well as globally. The causative agents for this infection are collectively called mucoromycetes which are the members of the order Mucorales. The diagnosis of the infection needs to be performed as soon as the occurrence of clinical symptoms which differs with types of Mucorales infection. Imaging techniques magnetic resonance imaging or computed tomography scan, culture testing, and microscopy are the approaches for the diagnosis. After the diagnosis of the infection is confirmed, rapid action is needed for the treatment in the form of antifungal therapy or surgery depending upon the severity of the infection. Delaying in treatment declines the chances of survival. In antifungal therapy, there are two approaches first-line therapy (monotherapy) and combination therapy. Amphotericin B ( 1 ) and isavuconazole ( 2 ) are the drugs of choice for first-line therapy in the treatment of mucormycosis. Salvage therapy with posaconazole ( 3 ) and deferasirox ( 4 ) is another approach for patients who are not responsible for any other therapy. Adjunctive therapy is also used in the treatment of mucormycosis along with first-line therapy, which involves hyperbaric oxygen and cytokine therapy. There are some drugs like VT-1161 ( 5 ) and APX001A ( 6 ), Colistin, SCH 42427, and PC1244 that are under clinical trials. Despite all these approaches, none can be 100% successful in giving results. Therefore, new medications with favorable or little side effects are required for the treatment of mucormycosis.  相似文献   
2.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
3.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
4.
Antiviral immunity requires recognition of viral pathogens and activation of cytotoxic and Th cells by innate immune cells. In this study, we demonstrate that hepatitis C virus (HCV) core and nonstructural protein 3 (NS3), but not envelope 2 proteins (E2), activate monocytes and myeloid dendritic cells (DCs) and partially reproduce abnormalities found in chronic HCV infection. HCV core or NS3 (not E2) triggered inflammatory cytokine mRNA and TNF-alpha production in monocytes. Degradation of I-kappa B alpha suggested involvement of NF-kappa B activation. HCV core and NS3 induced production of the anti-inflammatory cytokine, IL-10. Both monocyte TNF-alpha and IL-10 levels were higher upon HCV core and NS3 protein stimulation in HCV-infected patients than in normals. HCV core and NS3 (not E2) inhibited differentiation and allostimulatory capacity of immature DCs similar to defects in HCV infection. This was associated with elevated IL-10 and decreased IL-2 levels during T cell proliferation. Increased IL-10 was produced by HCV patients' DCs and by core- or NS3-treated normal DCs, while IL-12 was decreased only in HCV DCs. Addition of anti-IL-10 Ab, not IL-12, ameliorated T cell proliferation with HCV core- or NS3-treated DCs. Reduced allostimulatory capacity in HCV core- and NS3-treated immature DCs, but not in DCs of HCV patients, was reversed by LPS maturation, suggesting more complex DC defects in vivo than those mediated by core or NS3 proteins. Our results reveal that HCV core and NS3 proteins activate monocytes and inhibit DC differentiation in the absence of the intact virus and mediate some of the immunoinhibitory effects of HCV via IL-10 induction.  相似文献   
5.
De AK  Kodys K  Miller-Graziano C 《Cytokine》1998,10(12):911-919
The T cell-secreted lymphokine interleukin 13 (IL-13) exerts pleiotropic effects on monocytes (Mphi) and B cells. Since accessory cells, like Mphi and B cells, also act in antigen-presenting and lymphokine augmentation of T cells, Mphi and B cells may be able to effect T cell IL-13 production. Purified T cells produced slightly less IL-13 than the lower T cell numbers contained in peripheral blood mononuclear cell population, further suggesting accessory cell augmentation. Addition of 10% B cells [either unstimulated or pokeweed mitogen (PWM)-stimulated] to autologous T cells only moderately augmented T cell IL-13 levels. PWM-stimulated B cell culture supernates had even less augmenting effect on T cell IL-13 levels and unstimulated B cell culture supernates did not augment T cell IL-13 production. In contrast to the moderately augmenting effect of B cells or their stimulated culture supernates, addition of 10% Mphi, either unstimulated or muramyl dipeptide (MDP)+IFN-gamma stimulated, to autologous T cells produced a highly significant increase in T cell IL-13 production. Mphi culture supernates were equally effective in augmenting T cell IL-13 levels, suggesting both that cell-to-cell contact is not critical for Mphi augmentation of T cell IL-13 levels, and that Mphi secreted factors are pivotal. CD64(+) Mphi (or their culture supernates), which are known as poor antigen-presenting cells, also effectively augmented T cell IL-13 production, further supporting the involvement of Mphi secreted factors. Finally, experiments with exogenous addition of recombinant monokines, as well as neutralization experiments with different cytokine antibodies, suggested IL-1beta as a primary cytokine involved in the augmentation of T cell IL-13 levels by accessory cells. However, these experiments also indicated other unidentified Mphi factors as playing a significant role in producing maximal T cell IL-13 production.  相似文献   
6.
The effects of the trichothecene mycotoxins (acetyl T-2 toxin, T-2 toxin, HT-2 toxin, palmityl T-2 toxin, diacetoxyscirpenol (DAS), deoxynivalenol (DON), and T-2 tetraol) on bovine platelet function were examined in homologous plasma stimulated with platelet activating factor (PAF). The mycotoxins inhibited platelet function with the following order of potency: acetyl T-2 toxin > palmityl T-2 toxin = DAS > HT-2 toxin = T-2 toxin. While T-2 tetraol was completely ineffective as an inhibitor, DON exhibited minimal inhibitory activity at concentrations above 10×10?4M. The stability of the platelet aggregates formed was significantly reduced in all mycotoxin treated platelets compared to that of the untreated PAF controls. It is suggested that the increased sensitivity of PAF stimulated bovine platelets to the more lipophilic mycotoxins may be related to their more efficient partitioning into the platelet membrane compared to the more hydrophilic compounds.  相似文献   
7.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   
8.
Activation of Kupffer cells (KCs) by gut-derived lipopolysaccharide (LPS) and Toll-Like Receptors 4 (TLR4)-LPS-mediated increase in TNFα production has a central role in the pathogenesis of alcoholic liver disease. Micro-RNA (miR)-125b, miR-146a, and miR-155 can regulate inflammatory responses to LPS. Here we evaluated the involvement of miRs in alcohol-induced macrophage activation. Chronic alcohol treatment in vitro resulted in a time-dependent increase in miR-155 but not miR-125b or miR-146a levels in RAW 264.7 macrophages. Furthermore, alcohol pretreatment augmented LPS-induced miR-155 expression in macrophages. We found a linear correlation between alcohol-induced increase in miR-155 and TNFα induction. In a mouse model of alcoholic liver disease, we found a significant increase in both miR-155 levels and TNFα production in isolated KCs when compared with pair-fed controls. The mechanistic role of miR-155 in TNFα regulation was indicated by decreased TNFα levels in alcohol-treated macrophages after inhibition of miR-155 and by increased TNFα production after miR-155 overexpression, respectively. We found that miR-155 affected TNFα mRNA stability because miR-155 inhibition decreased whereas miR-155 overexpression increased TNFα mRNA half-life. Using the NF-κB inhibitors, MG-132 or Bay11-7082, we demonstrated that NF-κB activation mediated the up-regulation of miR-155 by alcohol in KCs. In conclusion, our novel data demonstrate that chronic alcohol consumption increases miR-155 in macrophages via NF-κB and the increased miR-155 contributes to alcohol-induced elevation in TNFα production via increased mRNA stability.  相似文献   
9.
Hepatitis C virus infection of hepatocytes is a multistep process involving the interaction between viral and host cell molecules. Recently, we identified ezrin–moesin–radixin proteins and spleen tyrosine kinase (SYK) as important host therapeutic targets for HCV treatment development. Previously, an ezrin hinge region peptide (Hep1) has been shown to exert anti-HCV properties in vivo, though its mechanism of action remains limited. In search of potential novel inhibitors of HCV infection and their functional mechanism we analyzed the anti-HCV properties of different human derived radixin peptides. Sixteen different radixin peptides were derived, synthesized and tested. Real-time quantitative PCR, cell toxicity assay, immuno-precipitation/western blot analysis and computational resource for drug discovery software were used for experimental analysis. We found that a human radixin hinge region peptide (Peptide1) can specifically block HCV J6/JFH-1 infection of Huh7.5 cells. Peptide 1 had no cell toxicity or intracellular uptake into Huh7.5 cells. Mechanistically, the anti-HCV activity of Peptide 1 extended to disruption of HCV engagement of CD81 thereby blocking downstream SYK activation, which we have recently demonstrated to be important for effective HCV infection of target hepatocytes. Our findings highlight a novel functional class of anti-HCV agents that can inhibit HCV infection, most likely by disrupting vital viral-host signaling interactions at the level of virus entry.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号