首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2008年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Tricyclohexylhydroxytin, commonly known as Plictran® inhibited Na+, K+ -ATPase activity of rat brain synaptosomes in a concentration-dependent manner with median inhibitory concentration (IC-50) of 2 μM. Both K+ -stimulated para-nitrophenylphosphatase and [3-H]-ouabain binding to synaptosomes were also inhibited by Plictran with IC-50 values of 11 and 30 μM, respectively. Altered pH and Na+, K+ -ATPase activity curves demonstrated comparable inhibition in buffered neutral and alkaline pH ranges, and no inhibition was observed in acidic pH. The inhibition of Na+, K+ -ATPase was independent of temperature. Kinetic studies of substrate (ATP) activation of Na+, K+ -ATPase indicated uncompetitive inhibition. Results also showed noncompetitive inhibition for p-nitrophenylphosphate and uncompetitive inhibition for K+ activations of p-nitrophenylphosphatase. Preincubation of synaptosomes with dithiothreitol, a sulfhydryl (SH) agent, resulted in the complete protection of Plictran inhibition of Na+, K+ -ATPase, K+ -para-nitrophenylphosphatase, and [3-H]-ouabain binding. The protection was specific and concentration dependent since cysteine and glutathione did not afford protection. These results indicate that Plictran inhibited Na+, K+ -ATPase by interacting with dephosphorylation of the enzyme-phosphoryl complex and exerted a similar effect to that of SH-blocking agents.  相似文献   
2.
Calcium is actively transported into intracellular organelles and out of the cytoplasm by Ca2+/Mg2+-ATPases located in the endoplasmic reticulum and plasma membranes. We studied the effects of aluminum on calcium transport in the adult rat brain. We examined 45Ca-uptake in microsomes and Ca2+-ATPase activity in microsomes and synaptosomes isolated from the frontal cortex and cerebellum of adult male Long-Evans rats. ATP-dependent45Ca-uptake was similar in microsomes from both brain regions. The addition of 50-800 μM AICI3 resulted in a concentration-dependent inhibition of 45Ca-uptake. Mg2+-dependent Ca2+-ATPase activity was significantly lower in synaptosomes compared to microsomes in both frontal cortex and cerebellum. In contrast to the uptake studies, AICI3 stimulated Mg2+-dependent Ca2+-ATPase activity in both microsomes and synaptosomes from both brain regions. To determine the relationship between aluminum and Mg2+, we measured ATPase activity in the presence of increasing concentrations of Mg2+ or AICI3. Maximal ATPase activity was obtained between 3 and 6 mM Mg2+. When we substituted AICI3 for Mg2+, ATPase activity was also stimulated in a concentration-dependent manner, but to a greater extent than with Mg2+. One interpretation of these data is that aluminum acts at multiple sites to displace both Mg2+ and Ca2+, increasing the activity of the Ca2+-ATPase, but disrupting transport of calcium.  相似文献   
3.
Cigarette smokers experience airway inflammation and epithelial damage, the mechanisms of which are unknown. One potential cause may be free radicals either in tobacco smoke or produced during persistent inflammation. Inflammation may also be a driving force to cause airway epithelium to undergo changes leading to squamous cell metaplasia. To test whether tobacco smoke-induced inflammation could be reduced by a catalytic antioxidant, manganese(III)meso-tetrakis(N,N'-diethyl-1,3-imidazolium-2-yl) porphyrin (AEOL 10150) was given by intratracheal instillation to rats exposed to filtered air or tobacco smoke. Exposure to tobacco smoke for 2 d or 8 weeks (6 h/d, 3 d/week) significantly increased the number of cells recovered by bronchoalveolar lavage (BAL). AEOL 10150 significantly decreased BAL cell number in tobacco smoke-treated rats. Significant reductions in neutrophils were noted at 2 d and macrophages at 8 weeks. Lymphocytes were significantly reduced by AEOL 10150 at both time points. Squamous cell metaplasia following 8 weeks of tobacco smoke exposure was 12% of the total airway epithelial area in animals exposed to tobacco smoke without AEOL 10150, compared with 2% in animals exposed to tobacco smoke, but treated with AEOL 10150 (p <.05). We conclude that a synthetic catalytic antioxidant decreased the adverse effects of exposure to tobacco smoke.  相似文献   
4.
Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame-retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these chemicals may pose a human health risk, especially to children. We have previously demonstrated that polychlorinated biphenyls (PCBs), which are structurally similar to PBDEs and cause neurotoxicity, perturb intracellular signaling events including calcium homeostasis and protein kinase C translocation, which are critical for neuronal function and development of the nervous system. The objective of the present study was to test whether environmentally relevant PBDE congeners 47 and 99 are also capable of disrupting Ca2 + homeostasis. Calcium buffering was determined by measuring 45Ca2 + -uptake by microsomes and mitochondria, isolated from adult male rat brain (frontal cortex, cerebellum, hippocampus, and hypothalamus). Results show that PBDEs 47 and 99 inhibit both microsomal and mitochondrial 45Ca2 + -uptake in a concentration-dependent manner. The effect of these congeners on 45Ca2 + -uptake is similar in all four brain regions though the hypothalamus seems to be slightly more sensitive. Among the two preparations, the congeners inhibited 45Ca2 + -uptake in mitochondria to a greater extent than in microsomes. These results indicate that PBDE 47 and PBDE 99 congeners perturb calcium signaling in rat brain in a manner similar to PCB congeners, suggesting a common mode of action of these persistent organic pollutants. The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory of the US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use. These results will be presented at the 21th Biennial Meeting of International Society for Neurochemistry and American Society for Neurochemistry in Cancun, Mexico (August 19–24, 2007). Special issue article in honor of Dr. Frode Fonnum.  相似文献   
5.
Halogenated aromatic hydrocarbon including polychlorinated biphenyls (PCBs) are persistent and bioaccumulative environmental toxicants. Although health effects associated with exposure to these chemicals, including motor dysfunction and impairment in memory and learning, have been identified, their molecular site of action is unknown. Previous study from this laboratory demonstrated that, while ortho PCBs perturbed intracellular signaling mechanisms including Ca2+ homeostasis, receptor-mediated inositol phosphate production and translocation of PKC, non-ortho PCBs did not. Since PKC signaling pathway is implicated in the modulation of motor behavior, as well as learning and memory, and the roles of PKC are isoform-specific, we have now studied the effects of two structurally distinct PCBs on isoforms of PKC in cerebellar granule cell culture model. Cells were exposed to 2,2'-dichlorobiphenyl (ortho PCB; 2,2'-DCB) or 4,4'-dichlorobiphenyl (non-ortho PCB; 4,4'-DCB) for 15 min, respectively, and subsequently fractionated and immunoblotted against the selected PKC monoclonal antibodies (alpha, gamma, delta, epsilon, lambda, iota). While 2,2'-DCB induced a translocation of PKC-alpha [cytosol (% control): 54 +/- 12 at 25 microM and 66 +/- 10 at 50 microM; membrane (% control): 186 +/- 37 at 25 microM and 200 +/- 48 at 50 microM] and -epsilon [cytosol (% control): 92 +/- 12 at 25 microM and 97 +/- 15 at 50 microM; membrane (% control): 143 +/- 23 at 25 microM and 192 +/- 24 at 50 microM] from cytosol to membrane fraction in a concentration-dependent manner, 4,4'-DCB had no effects. 2,2'-DCB induced translocation of PKC-alpha was blocked by pretreatment with sphingosine, suggesting a possible role of sphingolipid pathway. Although reports on implication of PKC-gamma with learning and memory are relatively extensive, the expression of this particular isoform in the primary cerebellar granule cells was below the detectable level. PKC-delta, -lambda and -iota were present in these cells, but were not altered by PCB exposure. These results suggest that the effects of 2,2'-DCB on PKC is isoform-dependent and PKC-alpha as well as PKC-epsilon may be target molecules for ortho-PCBs in neuronal cells.  相似文献   
6.
In amoebae of the cellular slime molds (mycetozoans) Acrasis rosea and Protostelium mycophaga, bundles of F-actin radiate from the endoplasm-ectoplasm interface into the pseudopodia, where G-actin is also located. We conclude that these actin bundles form a core scaffold driving pseudopod extension which is subsequently completed by filling with a more loosely organized meshwork of F-actin. Some bipolar, elongate amoebae of A. rosea also contained long bundles of F-actin that traverse the cells lengthwise and remotely resemble stress fibers. Rodlets of F-actin were scattered in the body of amoebae of A. rosea or formed star-shaped or polygonal complexes near or around contractile vacuoles, where they may play a role in contraction. In total protein extracts analyzed by SDS-PAGE and immunoblots the actins migrated like the rabbit skeletal muscle control. The relative proportion of actin in total protein extracts was 7.9% for A. rosea and 34.5% for P. mycophaga. We detected four or five isoactins in extracts of both species and we determined that the genome of each species contains approximately six actin genes. Whether they are all expressed or if posttranslational modifications occur remains to be determined. Myosin II was enriched in actomyosin extracts; its Mr was 187.8 kDa for A. rosea and 220.7 kDa for P. mycophaga. Cell models ("ghosts") contracted upon the addition of ATP. We conclude that amoebae of A. rosea and P. mycophaga, although behaving differently from those of Dictyostelium discoideum, contain the basic repertoire of molecules that enable pseudopod extension by actin polymerization and ATP-induced contraction of the cell cortex. Copyright 1998 Academic Press.  相似文献   
7.
Levels of various protein fractions, (sarcoplasmic, myosin, actin, non-collagen and collagen) and the rate of their degradation by proteases were studied in phasic and tonic muscles of marine prawn, Penaeus indicus following acute (2 d) and chronic (15 d) exposure to sublethal concentration of phosphamidon. During exposure, greater decrease in sarcoplasmic protein fraction was observed in phasic muscle as compared to other myofibrillar proteins. But the sarcoplasmic protein content showed an elevation in tonic muscle. The changes in protein fractions were more pronounced during acute exposure than chronic exposure both in phasic and tonic muscles. These changes were correlated with the elevation of the acidic, neutral and basic protease activities during acute and chronic exposure. Free amino acids were increased during acute exposure, while they showed a significant decrease during chronic exposure in both the muscles. These results indicate that protein metabolism in both phasic and tonic muscles was significantly altered following phosphamidon exposure. These differential responses observed at acute and chronic exposure indicate the operation of compensatory mechanisms to mitigate the phosphamidon toxic stress.  相似文献   
8.
Cationic amphiphilic drugs induce a phospholipid storage disorder known as phospholipidosis. Halogenated analogs of the drugs are more potent inducers of phospholipidosis when compared to nonhalogenated analogs. Two such antipsychotic drugs, promazine and chlorpromazine, are effectively taken up by the lungs and induce lamellar inclusions in vitro. We compared the in vivo toxicity and efficacy of promazine and chlorpromazine to induce phospholipidosis in the lung and in pulmonary alveolar macrophages. Male Sprague-Dawley rats were given promazine or chlorpromazine (25 mg/kg/day, P.O., in water) for 5 weeks. Food intake was decreased in promazine- and chlorpromazine-treated rats, chlorpromazine rats being affected more than promazine rats. To minimize experimental error due to starvation, control rats were pair-fed. The body weight gain was decreased in chlorpromazine rats in comparison to pair-fed controls. Chlorpromazine-treated rats, but not promazine-treated rats, showed increased mortality over the 5-week treatment period. Histopathologic examination of lung revealed loss of alveolar macrophages with no other gross abnormalities in chlorpromazine-treated rats. Quantitative analysis of lung lavage also showed significant reduction in the number of macrophages. This finding is in contrast to other cationic amphiphilic drugs, which induce phospholipidosis as well as accumulation of alveolar macrophages. Phospholipid level increased in alveolar macrophages but not in lavaged lung following chlorpromazine treatment. Acid phosphatase activity in lavaged lung homogenate and macrophages of promazine- and chlorpromazine-treated rats, taken as an index of toxicity to cells, did not differ significantly from control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
Lysosomal phospholipid storage disorder in lung tissue was observed during chronic treatment with amphiphilic amine drugs. The prevailing and widely accepted mechanism of phospholipidosis is that amphiphilic drugs bind to phospholipids and make the phospholipids unsuitable substrates for the action of phospholipases. We investigated hydrophobic and hydrophilic binding of fifteen drugs to the phospholipid storage organelle, lung lamellar bodies, isolated from male Sprague-Dawley rats. Hydrophobic interactions were studied using 1,6-diphenyl-1,3,5-hexatriene as a fluorescent probe and hydrophilic binding was studied using 1-anilino-8-naphthalene sulfonate as a fluorescent probe. The binding parameters were calculated using Scatchard equations. Of the fifteen drugs used, nine drugs bound to the hydrophobic moiety of lamellar bodies. The order of binding capacities was promethazine greater than chloramphenicol greater than amiodarone = desethylamiodarone greater than promazine greater than chlorpromazine greater than trimipramine greater than propranolol greater than imipramine much greater than chlorphentermine, phentermine, chloroquine, chlorimipramine, cyclizine and chlorcyclizine. Two binding affinities were calculated for all the bound drugs. Binding affinities to hydrophilic sites of lamellar bodies were calculated in terms of emission coefficients for 1-anilino-8-naphthalene sulfonate in the presence of drugs. Hydrophilic binding was in the order chlorpromazine greater than chlorimipramine greater than promazine greater than trimipramine greater than imipramine greater than chlorcyclizine greater than propranolol greater than promethazine greater than chlorphentermine greater than cyclizine greater than phentermine greater than chloroquine much greater than chloramphenicol, amiodarone and desethylamiodarone. The binding affinities of chlorinated analogs were stronger to hydrophilic sites when compared to the parent compound. Amiodarone, which is known to induce pulmonary phospholipidosis and its major non-polar metabolite, desethylamiodarone, bound strongly to lamellar bodies. These two drugs also inhibit phospholipases in vitro. The drugs with weak phospholipidosis-inducing capacity and extensive in vivo metabolism, namely, imipramine, chlorpromazine and promazine, also bound strongly to lamellar bodies with hydrophilic as well as hydrophobic interactions. On the other hand, chloroquine, which is known to induce phospholipidosis and to inhibit phospholipases, did not bind to lamellar bodies. Two major conclusions could be drawn from this study: one is that the drug interactions with isolated lamellar bodies could be studied using membrane fluorescence probes, 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalene sulfonate; second is that the amphiphilic drugs bind to lamellar bodies, as reported for phospholipid vesicles, and the binding of drugs to lamellar bodies could be correlated with their phospholipidosis-inducing capacity only if  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号