首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   2篇
  2020年   1篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
2.
Homocystinuria due to cystathionine beta-synthase (CBS) deficiency, inherited as an autosomal recessive trait, is the most prevalent inborn error of methionine metabolism. Its diverse clinical expression may include ectopia lentis, skeletal abnormalities, mental retardation, and premature arteriosclerosis and thrombosis. This variability is likely caused by considerable genetic heterogeneity. We investigated the molecular basis of CBS deficiency in 29 Dutch patients from 21 unrelated pedigrees and studied the possibility of a genotype-phenotype relationship with regard to biochemical and clinical expression and response to homocysteine-lowering treatment. Clinical symptoms and biochemical parameters were recorded at diagnosis and during long-term follow-up. Of 10 different mutations detected in the CBS gene, 833T-->C (I278T) was predominant, present in 23 (55%) of 42 independent alleles. At diagnosis, homozygotes for this mutation (n=12) tended to have higher homocysteine levels than those seen in patients with other genotypes (n=17), but similar clinical manifestations. During follow-up, I278T homozygotes responded more efficiently to homocysteine-lowering treatment. After 378 patient-years of treatment, only 2 vascular events were recorded; without treatment, at least 30 would have been expected (P<.01). This intervention in Dutch patients significantly reduces the risk of cardiovascular disease and other sequelae of classical homocystinuria syndrome.  相似文献   
3.
Total parenteral nutrition (TPN) is associated with the development of parenteral nutrition-associated liver disease (PNALD) in infants. Fish oil-based lipid emulsions can reverse PNALD, yet it is unknown if they can prevent PNALD. We studied preterm pigs administered TPN for 14 days with either 100% soybean oil (IL), 100% fish oil (OV), or a mixture of soybean oil, medium chain triglycerides (MCTs), olive oil, and fish oil (SL); a group was fed formula enterally (ENT). In TPN-fed pigs, serum direct bilirubin, gamma glutamyl transferase (GGT), and plasma bile acids increased after the 14 day treatment but were highest in IL pigs. All TPN pigs had suppressed hepatic expression of farnesoid X receptor (FXR), cholesterol 7-hydroxylase (CYP7A1), and plasma 7α-hydroxy-4-cholesten-3-one (C4) concentrations, yet hepatic CYP7A1 protein abundance was increased only in the IL versus ENT group. Organic solute transporter alpha (OSTα) gene expression was the highest in the IL group and paralleled plasma bile acid levels. In cultured hepatocytes, bile acid-induced bile salt export pump (BSEP) expression was inhibited by phytosterol treatment. We show that TPN-fed pigs given soybean oil developed cholestasis and steatosis that was prevented with both OV and SL emulsions. Due to the presence of phytosterols in the SL emulsion, the differences in cholestasis and liver injury among lipid emulsion groups in vivo were weakly correlated with plasma and hepatic phytosterol content.  相似文献   
4.
Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine beta-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T-->C (I278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C-->T; A-->V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHRF activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these two mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T-->C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-->T mutation in the MTHFR gene was found in (15%) of 60 cardiovascular patients and in only 6 (approximately 5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.2]). Because of both the high prevalence of the 833T-->C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease.  相似文献   
5.
Thymidylate synthase (TYMS) and 5,10-methylenetetrahydrofolate reductase (MTHFR) may compete for their common cofactor 5,10-methylenetetrahyhdrofolate (5,10-meTHF). Limiting 5,10-meTHF results in elevated homocysteine, especially in individuals homozygous for the T allele of the MTHFR C677T polymorphism. The TYMS gene has a tandem repeat polymorphism (two repeats or three repeats, designated 2R or 3R, respectively), which may also affect homocysteine concentrations. The 3R allele is subject to increased translational efficiency in vitro and the 3R3R genotype is associated with both decreased serum folate and elevated plasma homocysteine (tHcy) in a population of Singapore Chinese. We assessed the relationship between TYMS genotype and key biochemical and genetic variables in a random sample of 392 healthy young Northwestern European men and women. The tHcy concentrations for 3R3R homozygotes (median 8.5 mol/l) did not differ significantly from those for 2R2R homozygotes (median 8.7 mol/l) or 2R3R heterozygotes (median 9.3 mol/l) in the population as a whole (P=0.43), or in subsets of subjects with low serum folate (P=0.60) or the MTHFR 677TT genotype (P=0.90). Furthermore, there was no trend toward elevated tHcy in 3R3R homozygotes. Similarly, the TYMS tandem repeat polymorphism was not associated with serum folate concentrations. Our findings indicate that the TYMS 3R3R genotype is not a determinant of homocysteine in this sample of healthy young Caucasian adults from Northern Ireland.  相似文献   
6.
7.
Metabolomics - Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate,...  相似文献   
8.
Hyperhomocysteinemia (HHcy) is associated with impaired endothelial-dependent vasodilatation and increased risk of atherosclerosis and thrombosis. Here, we summarize some of our previous work on the effect of HHcy on pathways involved in endothelium-dependent vasodilatation, and present new data concerning the endothelium-derived hyperpolarizing factor (EDHF)-mediated vasodilatation. We showed that the 894 G>T single-nucleotide polymorphism in the human endothelial nitric oxide synthase gene (eNOS) increased the risk of recurrent venous thrombosis in individuals with elevated homocysteine levels, indicating that the pathophysiological mechanism in HHcy involves impaired NO-mediated vasodilatation. In addition, the EDHF-mediated vasodilatation of the renal artery was disturbed in diet-induced hyperhomocysteinemic rats. Interestingly, we demonstrated that pretreatment of rats with periodate-oxidized adenosine (Adox), which is an inhibitor of S-adenosylhomocysteine hydrolase, prevented the methionine-induced rise in plasma total Hcy (tHcy) levels but not the inhibition of the EDHF pathway. Furthermore, we demonstrated that S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) levels were increased in the kidneys of diet-induced HHcy rats, resulting in a decreased AdoMet:AdoHcy ratio. In addition, we demonstrated that mRNA expression of Connexin 40, which is one of the structural subunits of gap-junctions, was down-regulated in endothelial cells of HHcy rats, and correlated with elevated AdoHcy levels in kidney of these rats. These finding suggest a key role for AdoHcy in relation to decreased Cx40 mRNA expression and impaired EDHF-mediated vasodilatation of HHcy rats.  相似文献   
9.
BackgroundSedoheptulose, arabitol, ribitol, and erythritol have been identified as key diagnostic metabolites in TALDO deficiency.MethodUrine from 6 TALDO-deficient patients and TALDO-deficient knock-out mice were analyzed using 1H-NMR spectroscopy and GC–mass spectrometry.ResultsOur data confirm the known metabolic characteristics in TALDO-deficient patients. The β-furanose form was the major sedoheptulose anomer in TALDO-deficient patients. Erythronic acid was identified as a major abnormal metabolite in all patients and in knock-out TALDO mice implicating an as yet unknown biochemical pathway in this disease. A putative sequence of enzymatic reactions leading to the formation of erythronic acid is presented. The urinary concentration of the citric acid cycle intermediates 2-oxoglutaric acid and fumaric acid was increased in the majority of TALDO-deficient patients but not in the knock-out mice.ConclusionErythronic acid is a novel and major hallmark in TALDO deficiency. The pathway leading to its production may play a role in healthy humans as well. In TALDO-deficient patients, there is an increased flux through this pathway. The finding of increased citric acid cycle intermediates hints toward a disturbed mitochondrial metabolism in TALDO deficiency.  相似文献   
10.
Summary.  Oxidative damage to DNA has been well documented in cardiac cells isolated from diabetic patients and rats with streptozotocin-induced diabetes mellitus (DM). This study evaluates possible molecular mechanisms for early events in the development of DM-induced cardiomyopathy. Methods: To analyze the mechanism of overexpression of p21WAF1/CIP1 and inhibition of cyclin D1 expression in cardiomyocytes of diabetic rats we examined the methylation status of these genes by MS-PCR and assessed the possibility of epigenetic control of their expression. Results: We found that the steady-state expression of both genes is influenced by their methylation status, as an epigenetic event, of their 5′-flanking regions upon development of diabetes. Conclusions: Oxidative damage contributes to the development of cardiomyopathy via p53-dependent activation of cardiac cell death. This pathway includes de novo methylation of the P53-inducible p21WAF1/CIP1-gene encoding a protein which binds to and inhibits a broad range of cyclin-cyclin-dependent kinase complexes. Received June 29, 2001 Accepted August 6, 2001 Published online August 9, 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号