首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1976年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
An amiloride-sensitive Na+ channel is found in the apical plasma membrane of high resistance, Na+ transporting epithelia. We have developed a method for the identification of this channel based on the use of a new high affinity photoreactive amiloride analog, 2'-methoxy-5'-nitrobenzamil (NMBA), and anti-amiloride antibodies to identify photolabeled polypeptides. NMBA specifically labels the putative Na+ channel in bovine kidney microsomes. A 130-kDa polypeptide is detected on immunoblots with anti-amiloride antibodies. NMBA is a potent inhibitor of Na+ transport in the established amphibian kidney epithelial cell line A6, and specifically labels a 130-kDa polypeptide. We utilized both NMBA photolabeling and [3H]benzamil binding in order to examine the cellular pool of putative channels following hormonal regulation of Na+ transport. This pool is not significantly altered by the mineralocorticoid agonist aldosterone or antagonist spironolactone, despite a 3.8-fold difference in transepithelial Na+ transport.  相似文献   
2.
The steroid hormone aldosterone regulates reabsorptive Na+ transport across specific high resistance epithelia. The increase in Na+ transport induced by aldosterone is dependent on protein synthesis and is due, in part, to an increase in Na+ conductance of the apical membrane mediated by amiloride-sensitive Na+ channels. To examine whether an increment in the biochemical pool of Na+ channels expressed at the apical cell surface is a mechanism by which aldosterone increases apical membrane Na+ conductance, apical cell-surface proteins from the epithelial cell line A6 were specifically labeled by an enzyme-catalyzed radioiodination procedure following exposure of cells to aldosterone. Labeled Na+ channels were immunoprecipitated to quantify the biochemical pool of Na+ channels at the apical cell surface. The activation of Na+ transport across A6 cells by aldosterone was not accompanied by alterations in the biochemical pool of Na+ channels at the apical plasma membrane, despite a 3.7-4.2-fold increase in transepithelial Na+ transport. Similarly, no change in the distribution of immunoreactive protein was resolved by immunofluorescence microscopy. The oligomeric subunit composition of the channel remained unaltered, with one exception. A 75,000-Da polypeptide and a broad 70,000-Da polypeptide were observed in controls. Following addition of aldosterone, the 75,000-Da polypeptide was not resolved, and the 70,000-Da polypeptide was the major polypeptide found in this molecular mass region. Aldosterone did not alter rates of Na+ channel biosynthesis. These data suggest that neither changes in rates of Na+ channel biosynthesis nor changes in its apical cell-surface expression are required for activation of transepithelial Na+ transport by aldosterone. Post-translational modification of the Na+ channel, possibly the 75,000 or 70,000-Da polypeptide, may be one of the cellular events required for Na+ channel activation by aldosterone.  相似文献   
3.
The epithelial Na+ channel (ENaC) is comprised of three homologous subunits (α, β, and γ) that have a similar topology with two transmembrane domains, a large extracellular region, and cytoplasmic N and C termini. Although ENaC activity is regulated by a number of factors, palmitoylation of its cytoplasmic Cys residues has not been previously described. Fatty acid-exchange chemistry was used to determine whether channel subunits were Cys-palmitoylated. We observed that only the β and γ subunits were modified by Cys palmitoylation. Analyses of ENaCs with mutant β subunits revealed that Cys-43 and Cys-557 were palmitoylated. Xenopus oocytes expressing ENaC with a β C43A,C557A mutant had significantly reduced amiloride-sensitive whole cell currents, enhanced Na+ self-inhibition, and reduced single channel Po when compared with wild-type ENaC, while membrane trafficking and levels of surface expression were unchanged. Computer modeling of cytoplasmic domains indicated that β Cys-43 is in proximity to the first transmembrane α helix, whereas β Cys-557 is within an amphipathic α-helix contiguous with the second transmembrane domain. We propose that β subunit palmitoylation modulates channel gating by facilitating interactions between cytoplasmic domains and the plasma membrane.  相似文献   
4.
Recent molecular cloning of the epithelial sodium channel (ENaC) provides the opportunity to identify ENaC-associated proteins that function in regulating its cell surface expression and activity. We have examined whether ENaC is associated with Apx (apical protein Xenopus) and the spectrin-based membrane cytoskeleton in Xenopus A6 renal epithelial cells. We have also addressed whether Apx is required for the expression of amiloride-sensitive Na(+) currents by cloned ENaC. Sucrose density gradient centrifugation of A6 cell detergent extracts showed co-sedimentation of xENaC, alpha-spectrin, and Apx. Immunoblot analysis of proteins co-immunoprecipitating under high stringency conditions from peak Xenopus ENaC/Apx-containing gradient fractions indicate that ENaC, Apx, and alpha-spectrin are associated in a macromolecular complex. To examine whether Apx is required for the functional expression of ENaC, alphabetagamma mENaC cRNAs were coinjected into Xenopus oocytes with Apx sense or antisense oligodeoxynucleotides. The two-electrode voltage clamp technique showed there was a marked reduction in amiloride-sensitive current in oocytes coinjected with antisense oligonucleotides when to compared with oocytes coinjected with sense oligonucleotides. These studies indicate that ENaC is associated in a macromolecular complex with Apx and alpha-spectrin in A6 cells and suggest that Apx is required for the functional expression of ENaC in Xenopus epithelia.  相似文献   
5.
6.
Doklady Biochemistry and Biophysics - The effects of septoplasty and sinus lifting simulation in rats on changes in the frequency domain of heart rate variability were compared. In the early...  相似文献   
7.
Epithelial sodium channels (ENaCs) are composed of three homologous subunits that have regions preceding the second transmembrane domain (also referred as pre-M2) that form part of the channel pore. To identify residues within this region of the beta-subunit that line the pore, we systematically mutated residues Gln(523)-Ile(536) to cysteine. Wild type and mutant mouse ENaCs were expressed in Xenopus oocytes, and a two-electrode voltage clamp was used to examine the properties of mutant channels. Cysteine substitutions of 9 of 13 residues significantly altered Li(+) to Na(+) current ratios, whereas only cysteine replacement of beta Gly(529) resulted in K(+)-permeable channels. Besides beta G525C, large increases in the inhibitory constant of amiloride were observed with mutations at beta Gly(529) and beta Ser(531) within the previously identified 3-residue tract that restricts K(+) permeation. Cysteine substitution preceding (beta Phe(524) and beta Gly(525)), within (beta Gly(530)) or following (beta Leu(533)) this 3-residue tract, resulted in enhanced current inhibition by external MTSEA. External MTSET partially blocked channels with cysteine substitutions at beta Gln(523), beta Phe(524), and beta Trp(527). MTSET did not inhibit alpha beta G525C gamma, although previous studies showed that channels with cysteine substitutions at the corresponding sites within the alpha- and gamma-subunits were blocked by MTSET. Our results, placed in context with previous observations, suggest that pore regions from the three ENaC subunits have an asymmetric organization.  相似文献   
8.
The epithelial sodium channel (ENaC) is composed of three homologous subunits termed alpha, beta, and gamma. Previous studies suggest that selected residues within a hydrophobic region immediately preceding the second membrane-spanning domain of each subunit contribute to the conducting pore of ENaC. We probed the pore of mouse ENaC by systematically mutating all 24 amino acids within this putative pore region of the alpha-subunit to cysteine and co-expressing these mutants with wild type beta- and gamma-subunits of mouse ENaC in Xenopus laevis oocytes. Functional characteristics of these mutants were examined by two-electrode voltage clamp and single channel recording techniques. Two distinct domains were identified based on the functional changes associated with point mutations. An amino-terminal domain (alpha-Val(569)-alpha-Gly(579)) showed minimal changes in cation selectivity or amiloride sensitivity following cysteine substitution. In contrast, cysteine substitutions within the carboxyl-terminal domain (alpha-Ser(580)-alpha-Ser(592)) resulted in significant changes in cation selectivity and moderately altered amiloride sensitivity. The mutant channels containing alphaG587C or alphaS589C were permeable to K(+), and mutation of a GSS tract (positions alpha587-alpha589) to GYG resulted in a moderately K(+)-selective channel. Our results suggest that the C-terminal portion of the pore region within the alpha-subunit contributes to the selectivity filter of ENaC.  相似文献   
9.
The cystic fibrosis transmembrane conductance regulator (CFTR), in addition to its well defined Cl(-) channel properties, regulates other ion channels. CFTR inhibits epithelial Na(+) channel (ENaC) currents in many epithelial and nonepithelial cells. Because modulation of net NaCl reabsorption has important implications in extracellular fluid volume homeostasis and airway fluid volume and composition, we investigated whether this regulation was reciprocal by examining whether ENaC regulates CFTR. Co-expression of human (h) CFTR and mouse (m) alphabetagammaENaC in Xenopus oocytes resulted in a significant, 3.7-fold increase in whole-cell hCFTR Cl(-) conductance compared with oocytes expressing hCFTR alone. The forskolin/3-isobutyl-1-methylxanthine-stimulated whole-cell conductance in hCFTR-mENaC co-injected oocytes was amiloride-insensitive, indicating an inhibition of mENaC following hCFTR activation, and it was blocked by DPC (diphenylamine-2-carboxylic acid) and was DIDS (4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid)-insensitive. Enhanced hCFTR Cl(-) conductance was also observed when either the alpha- or beta-subunit of mENaC was co-expressed with hCFTR, but this was not seen when CFTR was co-expressed with the gamma-subunit of mENaC. Single Cl(-) channel analyses showed that both CFTR Cl(-) channel open probability and the number of CFTR Cl(-) channels detected per patch increased when hCFTR was co-expressed with alphabetagammamENaC. We conclude that in addition to acting as a regulator of ENaC, CFTR activity is regulated by ENaC.  相似文献   
10.
The extracellular regions of epithelial Na+ channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na+ (Na+ self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na+ channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na+ self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na+ self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the β or γ subunit knuckle domain resulted in little or no change in Na+ self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na+ self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号