首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   80篇
  486篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   15篇
  2014年   26篇
  2013年   31篇
  2012年   30篇
  2011年   56篇
  2010年   66篇
  2009年   35篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   13篇
  2004年   9篇
  2003年   9篇
  2002年   10篇
  2001年   8篇
  2000年   9篇
  1999年   8篇
  1998年   7篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1979年   5篇
  1978年   2篇
  1974年   1篇
  1973年   1篇
  1972年   5篇
  1971年   2篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1967年   5篇
  1965年   2篇
  1930年   1篇
排序方式: 共有486条查询结果,搜索用时 15 毫秒
1.
2.
Many viruses have membrane glycoproteins that are activated at cleavage sites containing multiple arginine and lysine residues by cellular proteases so far not identified. The proteases responsible for cleavage of the hemagglutinin of fowl plague virus, a prototype of these glycoproteins, has now been isolated from Madin-Darby bovine kidney cells. The enzyme has a mol. wt of 85,000, a pH optimum ranging from 6.5 to 7.5, is calcium dependent and recognizes the consensus sequence R-X-K/R-R at the cleavage site of the hemagglutinin. Using a specific antiserum it has been identified as furin, a subtilisin-like eukaryotic protease. The fowl plague virus hemagglutinin was also cleaved after coexpression with human furin from cDNA by vaccinia virus vectors. Peptidyl chloroalkylketones containing the R-X-K/R-R motif specifically bind to the catalytic site of furin and are therefore potent inhibitors of hemagglutinin cleavage and fusion activity.  相似文献   
3.
R Ohuchi  M Ohuchi  W Garten    H D Klenk 《Journal of virology》1991,65(7):3530-3537
To examine the prerequisites for cleavage activation of the hemagglutinin of human influenza viruses, a cDNA clone obtained from strain A/Port Chalmers/1/73 (serotype H3) was subjected to site-directed mutagenesis and expressed in CV-1 cells by using a simian virus 40 vector. The number of basic residues at the cleavage site, which consists of a single arginine with wild-type hemagglutinin, was increased by inserting two, three, or four additional arginines. Like wild-type hemagglutinin, mutants with up to three additional arginines were not cleaved in CV-1 cells, but insertion of four arginines resulted in activation. When the oligosaccharide at asparagine 22 of the HA1 subunit of the hemagglutinin was removed by site-directed mutagenesis of the respective glycosylation site, only three inserted arginines were required to obtain cleavage. Mutants containing a series of four basic residues were also generated by substituting arginine for uncharged amino acids immediately preceding the cleavage site. The observation that these mutants were not cleaved, even when the carbohydrate at asparagine 22 of HA1 was absent, underscores the fact that the basic peptide had to be generated by insertion to obtain cleavage. The data show that the hemagglutinin of a human influenza virus can acquire high cleavability, a property known to be an important determinant for the pathogenicity of avian influenza viruses. Factors important for cleavability are the number of basic residues at the cleavage site, the oligosaccharide at asparagine 22, and the length of the carboxy terminus of HA1.  相似文献   
4.
The structures of the oligosaccharides of the hemagglutinin of fowl plague virus [influenza A/FPV/Rostock/34 (H7N1)] have been elucidated by one- and two-dimensional 1H n.m.r. spectroscopy at 500 MHz and by microscale methylation analysis. N-Glycosidic oligosaccharides of the oligomannosidic (OM) and of the N-acetyllactosaminic type have been found, the latter type comprising biantennary structures, without (A) or with (E) bisecting N-acetylglucosamine, and triantennary (C) structures. Analysis of the tryptic and thermolytic glycopeptides of the hemagglutinin allowed the allocation of these oligosaccharides to the individual glycosylation sites. Each attachment site contained a unique set of oligosaccharides. Asn12 contains predominantly structures C and E which are highly fucosylated. Asn28 contains OM and A structures that lack fucose and sulfate. Asn123 shows A that has incomplete antennae but is highly fucosylated and sulfated. Asn149 has fucosylated A and E. Asn231 shows fucosylated A and E with incomplete antennae. Asn406 has OM oligosaccharides. Asn478 has A and E with little fucose. Localization of the oligosaccharides on the three-dimensional structure of the hemagglutinin revealed that the oligomannosidic glycans are attached to glycosylation sites at which the enzymes responsible for carbohydrate processing do not have proper access. These observations demonstrate that an important structural determinant for the oligosaccharide side chains is the structure of the glycoprotein itself. In addition, evidence was obtained that the rate of glycoprotein synthesis also has an influence on carbohydrate structure.  相似文献   
5.
Wild-type Sendai virus is exclusively pneumotropic in mice, while a host range mutant, F1-R, is pantropic. The latter was attributed to structural changes in the fusion (F) glycoprotein, which was cleaved by ubiquitous proteases present in many organs (M. Tashiro, E. Pritzer, M. A. Khoshnan, M. Yamakawa, K. Kuroda, H.-D. Klenk, R. Rott, and J. T. Seto, Virology 165:577-583, 1988). These studies were extended by investigating, by use of an organ block culture system of mice, whether differences exist in the susceptibility of the lung and the other organs to the viruses and in proteolytic activation of the F protein of the viruses. Block cultures of mouse organs were shown to synthesize the viral polypeptides and to support productive infections by the viruses. These findings ruled out the possibility that pneumotropism of wild-type virus results because only the respiratory organs are susceptible to the virus. Progeny virus of F1-R was produced in the activated form as shown by infectivity assays and proteolytic cleavage of the F protein in the infected organ cultures. On the other hand, much of wild-type virus produced in cultures of organs other than lung remained nonactivated. The findings indicate that the F protein of wild-type virus was poorly activated by ubiquitous proteases which efficiently activated the F protein of F1-R. Thus, the activating protease for wild-type F protein is present only in the respiratory organs. These results, taken together with a comparison of the predicted amino acid substitutions between the viruses, strongly suggest that the different efficiencies among mouse organs in the proteolytic activation of F protein must be the primary determinant for organ tropism of Sendai virus. Additionally, immunoelectron microscopic examination of the mouse bronchus indicated that the budding site of wild-type virus was restricted to the apical domain of the epithelium, whereas budding by F1-R occurred at the apical and basal domains. Bipolar budding was also observed in MDCK monolayers infected with F1-R. The differential budding site at the primary target of infection may be an additional determinant for organ tropism of Sendai virus in mice.  相似文献   
6.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   
7.
The carbohydrate contents of coronavirus glycoproteins E1 and E2 have been analyzed. E2 has complex and mannose-rich-type oligosaccharide side-chains, which are attached by N-glycosidic linkages to the polypeptide. Glycosylation of E2 is initiated at the co-translational level, and it is inhibited by tunicamycin, 2-deoxy-glucose, and 2-deoxy-2-fluoro-glucose. Thus, E2 belongs to a glycoprotein type found in many other enveloped viruses. E1, in contrast, represents a different class of glycoprotein. The following observations indicate that its carbohydrate side-chains have 0-glycosidic linkage. (1) The constituent sugars of E1 are N-acetylglucosamine, N-acetylgalactosamine, galactose, and neuraminic acid; mannose and fucose are absent. (2) The side-chains can be removed by β-elimination. (3) Glycosylation of E1 is not sensitive to the compounds interfering with N-glycosylation. E1 is the first viral glycoprotein analyzed that contains only 0-glycosidic linkages. Coronaviruses are therefore a suitable model system to study biosynthesis and processing of this type of glycoprotein.  相似文献   
8.
9.
10.
DNA–DNA hybridizations (DDH) play a key role in microbial species discrimination in cases when 16S rRNA gene sequence similarities are 97 % or higher. Using real-world 16S rRNA gene sequences and DDH data, we here re-investigate whether or not, and in which situations, this threshold value might be too conservative. Statistical estimates of these thresholds are calculated in general as well as more specifically for a number of phyla that are frequently subjected to DDH. Among several methods to infer 16S gene sequence similarities investigated, most of those routinely applied by taxonomists appear well suited for the task. The effects of using distinct DDH methods also seem to be insignificant. Depending on the investigated taxonomic group, a threshold between 98.2 and 99.0 % appears reasonable. In that way, up to half of the currently conducted DDH experiments could safely be omitted without a significant risk for wrongly differentiated species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号