首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   9篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2005年   3篇
  2004年   2篇
  2002年   2篇
  2001年   3篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   3篇
  1969年   1篇
  1968年   3篇
  1967年   1篇
  1942年   1篇
  1936年   1篇
排序方式: 共有124条查询结果,搜索用时 78 毫秒
1.
Citrobacter freundii, Paracoccus denitrificans and Pseudomonas stutzeri were grown either singly or in mixed culture in anaerobic nitrate or nitrite limited chemostats with formate and/or succinate as electron donors and carbon sources. C. freundii reduced nitrate or nitrite stoichiometrically to ammonia. Maximum molar growth yields for nitrate (nitrite) were 15.3 (9.9) g/mol for C. freundii on formate with succinate as carbon source, 15.3 (9.5) g/mol for Ps. stutzeri on succinate and 32.3 (20.4) g/mol for Pa. denitrificans on succinate. The almost identical growth yields indicate that the ATP output of the anaerobic processes in the nitrate (nitrite) ammonifying organism and Ps. stutzeri are nearly the same. In mixed cultures with either Ps. stutzeri or Pa. denitrificans, C. freundii was the best competitor for nitrate. These results show that in anaerobic environments C. freundii may compete successfully with denitrifying organisms.  相似文献   
2.
Abstract Nitrate reduction to ammonia by marine Vibrio species was studied in batch and continuous culture. In pH-controlled batch cultures (pH 7.4; 50 mM glucose, 20 mM KNO3), the nitrate consumed accumulated to more than 90% as nitrite. Under these conditions, the nitrite reductase (NO2→ NH3) was severely repressed. In pH-controlled continuous cultures of V. alginolyticus with glucose or glycerol as substrates ( D = 0.045 h−1) and limiting N-source (nitrate or nitrite), nitrite reductase was significantly derepressed with cellular activities in the range of 0.7–1.2 μmol min−1 (mg protein)−1. The enzyme was purified close to electrophoretic homogeneity with catalytic activity concentrations of about 1800 nkat/mg protein. It catalyzed the reduction of nitrite to ammonia with dithionite-reduced viologen dyes or flavins as electron donors, had an M r of about 50 000 (determined by gel filtration) and contained c-type heme groups (probably 4–6 per molecule).  相似文献   
3.
4.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
5.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H(2) photoproduction. However, a mutation in a structural hup gene did not result in maximum H(2) production rates, indicating that the capacity to recycle H(2) was not completely lost. Highest H(2) production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H(2) recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   
6.
30 strains of xylanolytic thermophilic actinomycetes were isolated from composted grass and cattle manure and identified as members of the generaThermomonospora, Saccharomonospora, Microbispora, Streptomyces andActinomadura. Screening of these strains for extracellular xylanase indicated that strains ofSaccharomonospora andMicrobispora generally were poor xylanase producers (0.5–1.5 U/ml) whereas relatively high activities were observed in cultures ofStreptomyces andActionomadura (4–12 U/ml).A preliminary characterization of the enzymes of strains of the latter genera suggested that xylanases of all the strains ofActinomadura exhibited higher thermostabilities than those ofStreptomyces. To evaluate the potential of thermophilicActinomadura for industrial applications, xylanases of three strains were studied in more detail. The highest activity levels for xylanases were observed in cultures grown on xylan and wheat bran. The optimal pH and temperature for xylanase activities ranged from 6.0 to 7.0 and 70 to 80°C. The enzymes exhibited considerable thermostability at their optimum temperature. The half-lives at 75°C were in the range from 6.5 to 17h. Hydrolysis of xylan by extracellular xylanases yielded xylobiose, xylose and arabinose as principal products. Estimated by the amount of reducing sugars liberated the degree of hydrolysis was 55 to 65%. Complete utilization of xylan is presumably achieved by -xylosidase activities which could be shown to be largely cell-associated in the 3Actinomadura strains.  相似文献   
7.
Glutamine synthetase (GS) of Rhodopseudomonas sphaeroides is regulated by adenylylation and deadenylylation. The extent of adenylylation/deadenylylation of the enzyme in cell free extracts was influenced by inorganic phosphate (P i), -ketoglutarate, ATP and other nucleotides. While P i and -ketoglutarate stimulated deadenylylation, ATP and other nucleotides enhanced adenylylation of the GS. By using proper combinations of the effectors and incubation conditions, any desired adenylylation state of GS could be adjusted in vitro. The enzyme was purified to electrophoretic homogenity by three steps including affinity chromatography on 5-AMP-Sepharose. Adenylylated and deadenylylated enzyme showed different UV-spectra and isoelectric points. The native enzyme had a molecular weight of 600,000, deadenylylated subunits of 50,000±1,000. Electron microscopic investigations revealed a dodecameric arrangement of subunits in two hexameric planes.  相似文献   
8.
The kinetic and regulatory properties of partially purified phosphoenolpyruvate (PEP) carboxykinase (EC 4.1.1.32) from Rhodospirillum rubrum were studied. The enzyme was active with guanosine-and inosinephosphates and must thus be classified as GTP (ITP): oxaloacetate carboxylyase (transphosphorylating). In the direction of oxaloacetate-formation, the enzyme was strongly inhibited by ATP (Ki=0.03 mM). ITP, UTP, CTP and GTP were less inhibitory. The inhibition was competitive with respect to GDP or IDP, but not with respect to PEP. In the direction of PEP-synthesis, the enzyme was not inhibited, but rather activated by ATP.  相似文献   
9.
10.
Within‐host interactions between co‐infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co‐infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host–parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co‐infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co‐infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co‐infections and with the genetic identity of the co‐infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host–parasite interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号