首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   19篇
  2022年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
  1928年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
Porin, a transmembrane protein in the outer membrane of Escherichia coli, exists in a trimeric structure which is not dissociated during sodium dodecyl sulfate-polyacrylamide gel electrophoresis at 25 degrees C. This unusual stability was utilized in the study of the conformational changes which accompany the targeting of porin to the outer membrane. A delay of 16-44 s between completion of synthesis of a monomer and its assembly into a trimer was found from the ratio of monomers to trimers found in exponentially growing cells. Pulse-chase experiments showed that rapid processing of precursor OmpF molecules was followed by assembly into sodium dodecyl sulfate-resistant oligomers with a half-time of 20 s at 30 degrees C. An intermediate in assembly was isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis below 10 degrees C and was identified as a metastable dimer.  相似文献   
2.
The recent solution of enteric bacterial porin structure, and new insights into the mechanism by which outer membrane receptor proteins recognize and internalize specific ligands, advocates the re-evaluation of TonB-dependent transport physiology. In this minireview we discuss the potential structural features of siderophore receptors and TonB, and use this analysis to evaluate both existing and new models of energy and signal transduction from the inner membrane to the outer membrane of gram-negative bacteria.  相似文献   
3.
Using sodium dodecyl sulfate-polyacrylamide gel electrophoresis of iron-deficient and replete cell envelopes, 59Fe-siderophore uptake studies, and Western immunoblots and cytofluorimetric analyses with monoclonal antibodies (MAbs), we surveyed a panel of gram-negative bacteria to identify outer membrane proteins that are structurally related to the Escherichia coli K-12 ferric enterobactin receptor, FepA. Antibodies within the panel identified FepA epitopes that are conserved among the majority of the bacteria tested, as well as epitopes present in only a few of the strains. In general, epitopes of FepA that are buried in the outer membrane bilayer were more conserved among gram-negative bacteria than epitopes that are exposed on the bacterial cell surface. The surface topology and tertiary structure of FepA are quite similar in E. coli and Shigella flexneri but differ in Salmonella typhimurium. Of the 18 different genera tested, 94% of the bacteria transported ferric enterobactin, including members of the previously unrecognized genera Citrobacter, Edwardsiella, Enterobacter, Haemophilus, Hafnia, Morganella, Neisseria, Proteus, Providencia, Serratia, and Yersinia. The ferric enterobactin receptor contains at least one buried epitope, recognized by MAb 2 (C. K. Murphy, V. I. Kalve, and P. E. Klebba, J. Bacteriol. 172:2736-2746, 1990), that is conserved within the structure of an iron-regulated cell envelope protein in all the bacteria that we have surveyed. With MAb 2, we identified and determined the Mr of cell envelope antigens that are immunologically related to E. coli FepA in all the gram-negative bacteria tested. Collectively, the library of anti-FepA MAbs showed unique patterns of reactivity with the different bacteria, allowing identification and discrimination of species within the following gram-negative genera: Aeromonas, Citrobacter, Edwardsiella, Enterobacter, Escherichia, Haemophilus, Hafnia, Klebsiella, Morganella, Neisseria, Proteus, Providencia, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio, and Yersinia.  相似文献   
4.
FetA, formerly designated FrpB, an iron-regulated, 76-kDa neisserial outer membrane protein, shows sequence homology to the TonB-dependent family of receptors that transport iron into gram-negative bacteria. Although FetA is commonly expressed by most neisserial strains and is a potential vaccine candidate for both Neisseria gonorrhoeae and Neisseria meningitidis, its function in cell physiology was previously undefined. We now report that FetA functions as an enterobactin receptor. N. gonorrhoeae FA1090 utilized ferric enterobactin as the sole iron source when supplied with ferric enterobactin at approximately 10 microM, but growth stimulation was abolished when an omega (Omega) cassette was inserted within fetA or when tonB was insertionally interrupted. FA1090 FetA specifically bound 59Fe-enterobactin, with a Kd of approximately 5 microM. Monoclonal antibodies raised against the Escherichia coli enterobactin receptor, FepA, recognized FetA in Western blots, and amino acid sequence comparisons revealed that residues previously implicated in ferric enterobactin binding by FepA were partially conserved in FetA. An open reading frame downstream of fetA, designated fetB, predicted a protein with sequence similarity to the family of periplasmic binding proteins necessary for transporting siderophores through the periplasmic space of gram-negative bacteria. An Omega insertion within fetB abolished ferric enterobactin utilization without causing a loss of ferric enterobactin binding. These data show that FetA is a functional homolog of FepA that binds ferric enterobactin and may be part of a system responsible for transporting the siderophore into the cell.  相似文献   
5.
The ligand-gated outer membrane porin FepA serves Escherichia coli as the receptor for the siderophore ferric enterobactin. We characterized the ability of seven analogs of enterobactin to supply iron via FepA by quantitatively measuring the binding and transport of their 59Fe complexes. The experiments refuted the idea that chirality of the iron complex affects its recognition by FepA and demonstrated the necessity of an unsubstituted catecholate coordination center for binding to the outer membrane protein. Among the compounds we tested, only ferric enantioenterobactin, the synthetic, left-handed isomer of natural enterobactin, and ferric TRENCAM, which substitutes a tertiary amine for the macrocyclic lactone ring of ferric enterobactin but maintains an unsubstituted catecholate iron complex, were recognized by FepA (Kd ≈ 20 nM). Ferric complexes of other analogs (TRENCAM-3,2-HOPO; TREN-Me-3,2-HOPO; MeMEEtTAM; MeME-Me-3,2-HOPO; K3MECAMS; agrobactin A) with alterations to the chelating groups and different net charge on the iron center neither adsorbed to nor transported through FepA. We also compared the binding and uptake of ferric enterobactin by homologs of FepA from Bordetella bronchisepticus, Pseudomonas aeruginosa, and Salmonella typhimurium in the native organisms and as plasmid-mediated clones expressed in E. coli. All the transport proteins bound ferric enterobactin with high affinity (Kd ≤ 100 nM) and transported it at comparable rates (≥50 pmol/min/109 cells) in their own particular membrane environments. However, the FepA and IroN proteins of S. typhimurium failed to efficiently function in E. coli. For E. coli, S. typhimurium, and P. aeruginosa, the rate of ferric enterobactin uptake was a sigmoidal function of its concentration, indicating a cooperative transport reaction involving multiple interacting binding sites on FepA.  相似文献   
6.
McNamara, M.E., Orr, P.J., Manzocchi, T., Alcalá, L., Anadón, P. & Peñalver, E. 2011: Biological controls upon the physical taphonomy of exceptionally preserved salamanders from the Miocene of Rubielos de Mora, northeast Spain. Lethaia, Vol. 45, pp. 210–226. The middle Miocene Rubielos de Mora Konservat‐Lagerstätte of northeast Spain is hosted within profundal, finely laminated, lacustrine mudstones. The diverse biota includes abundant salamanders. Most individuals died during separate episodes and sank rapidly postmortem. Specimens are typically preserved in dorso‐ventral aspect, the most hydrodynamically stable orientation. The near‐cylindrical morphology of the body, however, allowed some carcasses to settle in or subsequently re‐orientate into, lateral orientations. Loss of skeletal elements (i.e. reduced completeness) reflects their location within the body and followed a distal to proximal trend. Two stages are identified: initial loss of a small number of phalanges, followed by loss of more proximal limb bones plus additional phalanges. Disarticulation is more complex: it occurred via several mechanisms (notably, abdominal rupture and re‐orientation of part of the body and limbs during decay) and shows no consistent pattern among specimens. The physical taphonomy of the salamanders is controlled predominantly by intrinsic biological factors, i.e. the geometry of the body and of individual skeletal elements, the orientation, inherent strength and location of specific joints and the extent to which soft tissues, particularly the skin, persist during decay. These biological factors probably control patterns of physical taphonomy of other fossil tetrapods with a similar skeletal configuration. □Articulation, completeness, Konservat‐Lagerstätten, orientation, quantitative taphonomy, salamanders.  相似文献   
7.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
8.
9.
Eight Danish Holstein cows were milked with a 1-mm thick specially designed soft liner on their right rear teat and a standard liner mounted under extra high tension on their left rear teat. Four of the animals were overmilked for 5 min. Rear teats were subjected to ultrasound examination on the first day and to infrared thermography on the second day. Teats were submersed in ethanol 20 min post-milking on the second day. Ultrasonography measurements showed that teat canal length increased by 30–41% during milking. Twenty minutes after milking, teats milked with modified standard liners still had elongated teat canals while teats milked with the soft liner were normalized. Overmilking tended to increase teat wall thickness. Approximately 80% of variability in teat canal length, from before teat preparation to after milking, could be explained by changes during teat preparation. Thermography indicated a general drop in teat temperature during teat preparation. Teat temperature increased during milking and continued to increase until the ethanol challenge induced a significant drop. Temperatures approached pre-challenge rather than pre-milking temperatures within 10 minutes after challenge. Teat temperatures were dependent on type of liner. Mid-teat temperatures post-challenge relative to pre-teat preparation were dependent on overmilking. Thermography and ultrasound were considered useful methods to indirectly and non invasively evaluate teat tissue integrity.  相似文献   
10.
To find out the infection efficiency of recombinant adeno-as sociated virus 2-mediated exogenou s genes in human peripheral blood monocyte-derived dendritic cells(D Cs),the process of transfection wa s investigated by FITC-labeled rAA V2,and observed under confocal mic roscope.Newly separated dendritic cells were tranfected by rAAV2-luc and rAAV2-GFP at different MOI,and transfection efficiency were detec ted by luminometer for rAAV2-luc a nd flow cytometry for rAAV2-GFP.Th e results were elucidated in four different assay systems:(1)60min w as needed for rAAV2 to bind on den dritic cells,and got into cells in the following 10min;(2)the express ion of luc could be detected at th e MOI as low as 1×10~5v.g/cell,and the expression plateau was reached by the MOI of 10~6~10~7v.g/cell,furt her increase of MOI had no functio n on expression level;(3)transgene expression was detected after 48h, and maintained a higher expression level from 96h to 240h after infec tion;(4)7days postinfection of rAA V2-GFP,5%~18% dendritic cells were GFP positive. These data suggest th at rAAV2 vector can efficiently in fect monocyte-derived dendritic ce lls and mediate exogenous gene exp ression,and that the application o f rAAV2 as vector may be useful fo r gene transfer to dendritic cells in ex vivo immunotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号