首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19222篇
  免费   1575篇
  国内免费   4篇
  2021年   192篇
  2020年   158篇
  2019年   149篇
  2018年   212篇
  2017年   223篇
  2016年   352篇
  2015年   624篇
  2014年   677篇
  2013年   866篇
  2012年   1126篇
  2011年   1000篇
  2010年   704篇
  2009年   575篇
  2008年   900篇
  2007年   923篇
  2006年   850篇
  2005年   798篇
  2004年   825篇
  2003年   813篇
  2002年   792篇
  2001年   435篇
  2000年   368篇
  1999年   395篇
  1998年   242篇
  1997年   199篇
  1996年   199篇
  1995年   218篇
  1994年   194篇
  1993年   190篇
  1992年   296篇
  1991年   321篇
  1990年   235篇
  1989年   231篇
  1988年   236篇
  1987年   212篇
  1986年   198篇
  1985年   197篇
  1984年   208篇
  1983年   158篇
  1982年   159篇
  1981年   161篇
  1980年   119篇
  1979年   162篇
  1978年   140篇
  1977年   140篇
  1976年   112篇
  1975年   121篇
  1974年   146篇
  1973年   125篇
  1972年   114篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Summary The pattern of intercellular connections between germ line cells has been studied in follicles of the mutantdicephalic (dic), which possess nurse cell clusters at both poles. Staining of follicles with a fluorescent rhodamine conjugate of phalloidin reveals ring canals and cell membranes and thus allows us to reconstruct the spatial organization of the follicle. Each germ line cell can be identified by the pattern of cell-cell connections which reflect the mitotic history of individual cells in the 16-cell cluster. The results indicate that in both wild-type anddicephalic cystocyte clusters one of the two cells with four ring canals normally becomes the pro-oocyte. However, in some follicles (dicephalic and wild-type) oocytes were found with fewer or more than four ring canals. Indic follicles, one or several nurse cells may become disconnected from the other cells during oocyte growth at stage 9–10. Such disconnected cells cannot later on empty their cytoplasm into the oocyte. This, in turn, might be of consequence for the determination of axial polarity of the embryo.  相似文献   
2.
3.
4.
Summary In the initial phase of the geotropical reaction of the Chara rhizoid the growth difference postulated by Sievers (1967c) between the physically upper, slightly subapical flank and the lower one is demonstrated. In horizontal exposure the growth of the extreme cell apex is continued, while the growth of the lower flank is inhibited and that of the upper one is promoted. In the end phase the cell apex shows a damped oscillation until it finally reaches the vertical growth direction. The statoliths follow the oscillating growth of the cell tip from one flank to the opposite one until they are statistically equally redistributed in their normal position.—In vertical exposure under reduced turgor pressure the statoliths fall down into the extreme cell apex, where they inhibit the growth of this part of the cell wall, while the subapical wall grows transversally.—It is concluded that the statoliths inhibit the growth of the cell wall area which they cover.—The physical phase of the reaction chain, the susception, is the gravity-induced downward displacement of the statoliths. The physiological phase starts with the diversion of the acropetal transport of the Golgi vesicles to the upper part of the cell, which is caused by the block of statoliths (perception). The greater rate of vesicle incorporation into the upper flank in comparison to the lower one causes the subapical growth difference which results in the curvature (reaction).—In the case of the Chara rhizoid Golgi- and statolith-apparatus function as a self-regulating cellular system.

Herrn Prof. Dr. Dr. h. c. Kurt Mothes zum 70. Geburtstag.  相似文献   
5.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C.  相似文献   
6.
7.
Summary The production of acetate from the fermentation of lactate by Gluconobacter oxydans was studied. Batch experiments showed that glucose was the preferred substrate compared to lactate. A fed-batch culture was fed with a mixture of glucose and lactate followed by periodic addition of lactate. The maximum productivity of acetate was 0.16 g/l h but this value decreased during the fedbatch culture due to growth inhibition by acetate.  相似文献   
8.
U Brandt  G von Jagow 《FEBS letters》1991,287(1-2):215-218
Cytochrome c reductase is inhibited by p-chlorophenyl-methoxybenzyl-ketoxime (CPMB-oxime). CPMB-oxime induces a red-shift of the reduced spectrum of cytochrome b. The inhibitor blocks the oxidation of ubihydroquinone at the QP center of this enzyme in a non-competitive way. The binding stoichiometry equals one inhibitor molecule per Qp center. The apparent Kd in a red-shift assay was 6.9 +/- 0.6 microM. All binding characteristics analysed in this study were very similar to those of the E-beta-methoxyacrylate inhibitors, although the chemical structure is different from these inhibitors. This result is interpreted as a support for the inhibitory mechanism based on the model of a 'catalytic switch' proposed recently for the E-beta-methoxyacrylate inhibitors (MOA-inhibitors (Brandt and von Jagow, Eur. J. Biochem.  相似文献   
9.
In the American lobster (Homarus americanus) the biogenic amines serotonin and octopamine appear to play important and opposite roles in the regulation of aggressive behavior, in the establishment and/or maintenance of dominant and subordinate behavioral states and in the modulation of the associated postural stances and escape responses. The octopamine-containing neurosecretory neurons in the thoracic regions of the lobster ventral nerve cord fall into two morphological subgroups, the root octopamine cells, a classical neurohemal group with release regions along second thoracic roots, and the claw octopamine cells, a group that selectively innervates the claws. Cells of both subgroups have additional sets of endings within neuropil regions of ganglia of the ventral nerve cord. Octopamine neurosecretory neurons generally are silent, but when spontaneously active or when activated, they show large overshooting action potentials with prominent after-hyperpolarizations. Autoinhibition after high-frequency firing, which is also seen in other crustacean neurosecretory cells, is readily apparent in these cells. The cells show no spontaneous synaptic activity, but appear to be excited by a unitary source. Stimulation of lateral or medial giant axons, which excite serotonergic cells yielded no response in octopaminergic neurosecretory cells and no evidence for direct interactions between pairs of octopamine neurons, or between the octopaminergic and the serotonergic sets of neurosecretory neurons was found.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号