首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1978年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
The development of a novel method for absolute quantification of proteins based on isotope-coded affinity tagging using ICAT reagents is described. The method exploits synthetic peptide standards to determine protein content at the femtomole level in biological samples. The approach is generally applicable to any subset of proteins, but is particularly appropriate for quantitative analysis of multiple, closely related isoforms, and for hydrophobic proteins that are poorly represented in 2-D gels. Relative and absolute quantification techniques are applied to an important group of microsomal metabolic enzymes, the cytochromes P450 (P450), which are critical in determining the disposition, safety and efficacy of drugs in man. Measurement of the P450 induction profile in response to chemicals is a fundamental aspect of drug safety evaluation and is currently achieved by low-throughput methods employing poorly discriminatory antibodies or substrates. Tagging technology is shown to supersede conventional methods for P450 profiling in terms of discriminatory power and throughput, exemplified by the simultaneous detection of distinct induction profiles for cyp2c subfamily members in response to phenobarbitone: cyp2c29 expression, but not cyp2c40 or cyp2c50, was induced threefold by treatment. This technology should abbreviate the drug development pathway, and provide a widely applicable, rapid means of quantifying proteins.  相似文献   
2.
3.
In studies of the plasma proteome, the high abundance of proteins such as albumin and immunoglobulin impedes the investigation of lower abundance proteins that may be more suitable as biomarkers of disease. We report the specific removal of 98% of albumin and 80% of immunoglobulin heavy chain from human plasma by affinity chromatography, and the subsequent improvement in the number of spots detected and their resolution following two-dimensional gel electrophoresis.  相似文献   
4.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
5.
Chemically reactive metabolites (CRMs) are thought to be responsible for a number of adverse drug reactions through modification of critical proteins. Methods that defined the chemistry of protein modification at an early stage would provide invaluable tools for drug safety assessment. Here, human GST pi (GSTP) was exploited as a model target protein to determine the chemical, biochemical and functional consequences of exposure to the hepatotoxic CRM of paracetamol (APAP), N-acetyl-p-benzoquinoneimine (NAPQI). Site-specific, dose-dependent modification of Cys47 in native and His-tagged GSTP was revealed by MS, and correlated with inhibition of glutathione (GSH) conjugating activity. In addition, the adaptation of iTRAQ labelling technology to define precisely the quantitative relationship between covalent modification and protein function is described. Multiple reaction monitoring (MRM)-MS of GSTP allowed high sensitivity detection of modified peptides at physiological levels of exposure. Finally, a bioengineered mutant cytochrome P450 with a broad spectrum of substrate specificities was used in an in vitro reaction system to bioactivate APAP: in this model, GSTP trapped the CRM and exhibited both reduced enzyme activity and site-specific modification of the protein. These studies provide the foundation for the development of novel test systems to predict the toxicological potential of CRMs produced by new therapeutic agents.  相似文献   
6.
The extract of Ginkgo biloba (EGb), containing 24% flavone glycosides and 6% terpenoids, is widely used to treat early-stage Alzheimer's disease, vascular dementia, peripheral claudication and vascular tinnitus. Its remarkable antioxidant activity has recently been demonstrated in both cell lines and animals. Glutathione-S-transferases (GSTs) are a class of important detoxification enzymes in the antioxidant system and GST-P1 is the major GST isoform highly expressed in human tissues. Over expression of GST-P1 protected prostate cells from cytotoxicity and DNA damage by the heterocyclic amine carcinogen, while inhibition of expression of GST-P1 by transfecting GST-P1 antisense cDNA or targeted deletion of GST-P1 has been found to sensitize cells to cytotoxic chemicals. It is obvious that induction of GST-P1 expression should be a promising alternative for chemoprevention. The present study aimed to investigate the induction effect of EGb on GST-P1 in HepG2 and Hep1c1c7 cell lines and found that GST-P1 was increased both at the expression and enzyme activity levels.  相似文献   
7.
8.
9.
Unprecedented developments in stem cell research herald a new era of hope and expectation for novel therapies. However, they also present a major challenge for regulators since safety assessment criteria, designed for conventional agents, are largely inappropriate for cell-based therapies. This article aims to set out the safety issues pertaining to novel stem cell-derived treatments, to identify knowledge gaps that require further research, and to suggest a roadmap for developing safety assessment criteria. It is essential that regulators, pharmaceutical providers, and safety scientists work together to frame new safety guidelines, based on "acceptable risk," so that patients are adequately protected but the safety "bar" is not set so high that exciting new treatments are lost.  相似文献   
10.
Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN‐I) in enabling this process. An IFN‐I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN‐I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1?/? mice were incapable of initiating Th2 responses in vivo. These data demonstrate for the first time that the influence of IFN‐I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号