首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
The vegetative-to-floral transition ofBrassica campestris cv. Osome was induced by vernalization. Poly(A)+RNA was isolated from the transition shoot apex after 6 weeks of vernalization, the floral apex after 12 weeks of vernalization and the expanded leaves just before vernalization, and cDNAs were synthesized. These cDNAs were used for subtraction and differential screening to select cDNA preferentially present in the transition and floral apices. Nucleotide sequences of the resulting 14 cDNA clones were determined, and northern blot analysis was carried out on six cDNAs. Two cDNA clones which did not show significant similarity to known genes were shown to be preferentially expressed in the floral apex.  相似文献   
2.
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F2 populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.  相似文献   
3.
Dehydration responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) induces the expression of many stress-inducible genes in Arabidopsis. We have previously reported the identification of three DREB1/ICBF homologs from sweet cherry (Prunus avium). To identify the function of these homologs, one of the genes, CIG-B, was transformed into Arabidopsis. In one of the transgenic plant lines, the DREB1/CBF target gene cor15a was induced in the absence of stress treatment. The cor15a-overexpressing transgenic plant exhibited mild growth retardation and had greater salt and freezing tolerance than did the wild-type and the transgenic lines in which cor15a was not induced. These results suggest that this sweet cherry DREB1/CBF homolog has a function similar to that of DREB1/CBF.  相似文献   
4.
In interspecific pollination of Brassica rapa stigmas with Brassica oleracea pollen grains, pollen tubes cannot penetrate stigma tissues. This trait, called interspecific incompatibility, is similar to self-incompatibility in pollen tube behaviors of rejected pollen grains. Since some B. rapa lines have no interspecific incompatibility, genetic analysis of interspecific incompatibility was performed using two F2 populations. Analysis with an F2 population between an interspecific-incompatible line and a self-compatible cultivar ‘Yellow sarson’ having non-functional alleles of S-locus genes and MLPK, the stigmas of which are compatible with B. oleracea pollen grains, revealed no involvement of the S locus and MLPK in the difference of their interspecific incompatibility phenotypes. In QTL analysis of the strength of interspecific incompatibility, three peaks of LOD scores were found, but their LOD scores were as high as the threshold value, and the variance explained by each QTL was small. QTL analysis using another F2 population derived from selected parents having the highest and lowest levels of interspecific incompatibility revealed five QTLs with high LOD scores, which did not correspond to those found in the former population. The QTL having the highest LOD score was found in linkage group A02. The effect of this QTL on interspecific incompatibility was confirmed by analyzing backcrossed progeny. Based on synteny of this QTL region with Arabidopsis thaliana chromosome 5, a possible candidate gene, which might be involved in interspecific incompatibility, is discussed.  相似文献   
5.
Plant genetic resources are important sources of genetic variation for improving crop varieties as breeding materials. Conservation of such resources of allogamous species requires maintenance of the genetic diversity within each accession to avoid inbreeding depression and loss of rare alleles. For assessment of genetic diversity in the self-incompatibility locus (S locus), which is critically involved in the chance of mating, we developed a dot-blot genotyping method for self-incompatibility (S) haplotypes and applied it to indigenous, miscellaneous landraces of Brassica rapa, provided by the IPK Gene Bank (Gatersleben, Germany) and the Tohoku University Brassica Seed Bank (Sendai, Japan), in which landraces are maintained using different population sizes. This method effectively determined S genotypes of more than 500 individuals from the focal landraces. Although our results suggest that these landraces might possess sufficient numbers of S haplotypes, the strong reduction of frequencies of recessive S haplotypes occurred, probably owing to genetic drift. Based on these results, we herein discuss an appropriate way to conserve genetic diversity of allogamous plant resources in a gene bank.  相似文献   
6.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   
7.
8.
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.  相似文献   
9.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   
10.

Key message

We identified three physical positions associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. We also confirmed their genetic effects on the embryo yield.

Abstract

Isolated microspore culture is well utilized for the production of haploid or doubled-haploid plants in Brassica crops. Brassica rapa cv. ‘Ho Mei’ is one of the most excellent cultivars in embryo yield of microspore culture. To identify the loci associated with microspore embryogenesis, segregation analysis of 154 DNA markers anchored to B. rapa chromosomes (A01–A10) was performed using a population of microspore-derived embryos obtained from an F1 hybrid between ‘CR-Seiga’, a low yield cultivar in microspore-derived embryos, and ‘Ho Mei’. Three regions showing significant segregation distortion with increasing ‘Ho Mei’ alleles were detected on A05, A08 and A09, although these regions showed the expected Mendelian segregation ratio in an F2 population. The additive effect of alleles in these regions on embryo yield was confirmed in a BC3F1 population. One region on A08 containing Br071-5c had a higher effect than the other regions. Polymorphism of nucleotide sequences around the Br071-5c locus was investigated to find the gene possibly responsible for efficient embryogenesis from microspores.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号