首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2125篇
  免费   177篇
  国内免费   4篇
  2306篇
  2024年   9篇
  2023年   11篇
  2022年   26篇
  2021年   58篇
  2020年   37篇
  2019年   33篇
  2018年   44篇
  2017年   46篇
  2016年   58篇
  2015年   109篇
  2014年   111篇
  2013年   143篇
  2012年   164篇
  2011年   151篇
  2010年   98篇
  2009年   71篇
  2008年   99篇
  2007年   108篇
  2006年   100篇
  2005年   94篇
  2004年   75篇
  2003年   82篇
  2002年   66篇
  2001年   34篇
  2000年   45篇
  1999年   26篇
  1998年   20篇
  1997年   21篇
  1996年   21篇
  1995年   16篇
  1994年   13篇
  1993年   17篇
  1992年   18篇
  1991年   26篇
  1990年   11篇
  1989年   23篇
  1988年   20篇
  1987年   17篇
  1986年   14篇
  1985年   17篇
  1984年   12篇
  1983年   13篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   11篇
  1978年   14篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
排序方式: 共有2306条查询结果,搜索用时 15 毫秒
1.
Most planktonic larvae of marine invertebrates are denser than sea water, and rely on swimming to locate food, navigate advective currents, and avoid predators. Therefore, swimming behaviors play important roles in larval survival and dispersal. Larval bodies are often complex and highly variable across developmental stages and environmental conditions. These complex morphologies reflect compromises among multiple evolutionary pressures, including maintaining the ability to swim. Here, I highlight metrics of swimming performance, their relationships with morphology, and the roles of behavior in modulating larval swimming within biomechanical limits. Sand dollars have a representative larval morphology using long ciliated projections for swimming and feeding. Observed larval sand dollars fell within a narrow range of key morphological parameters that maximized their abilities to maintain directed upward movement over the most diverse flow fields, outperforming hypothetical alternatives in a numerical model. Ontogenetic changes in larval morphology also led to different vertical movements in simulated flow fields, implying stage-dependent vertical distributions and lateral transport. These model outcomes suggest a tight coupling between larval morphology and swimming. Environmental stressors, such as changes in temperature and pH, can therefore affect larval swimming through short-term behavioral adjustments and long-term changes in morphology. Larval sand dollars reared under elevated pCO(2) conditions had significantly different morphology, but not swimming speeds or trajectories. Geometric morphometric analysis showed a pH-dependent, size-mediated change in shape, suggesting a coordinated morphological adjustment to maintain swimming performance under acidified conditions. Quantification of the biomechanics and behavioral aspects of swimming improves predictions of larval survival and dispersal under present-day and future environmental conditions.  相似文献   
2.
    
Since the first documentation of climate-warming induced declines in arctic sea-ice, predictions have been made regarding the expected negative consequences for endemic marine mammals. But, several decades later, little hard evidence exists regarding the responses of these animals to the ongoing environmental changes. Herein, we report the first empirical evidence of a dramatic shift in movement patterns and foraging behaviour of the arctic endemic ringed seal (Pusa hispida), before and after a major collapse in sea-ice in Svalbard, Norway. Among other changes to the ice-regime, this collapse shifted the summer position of the marginal ice zone from over the continental shelf, northward to the deep Arctic Ocean Basin. Following this change, which is thought to be a ‘tipping point’, subadult ringed seals swam greater distances, showed less area-restricted search behaviour, dived for longer periods, exhibited shorter surface intervals, rested less on sea-ice and did less diving directly beneath the ice during post-moulting foraging excursions. In combination, these behavioural changes suggest increased foraging effort and thus also likely increases in the energetic costs of finding food. Continued declines in sea-ice are likely to result in distributional changes, range reductions and population declines in this keystone arctic species.  相似文献   
3.
Animal behaviour is of fundamental importance but is often overlooked in biological invasion research. A problem with such studies is that they may add pressure to already threatened species and subject vulnerable individuals to increased risk. One solution is to obtain the maximum possible information from the generated data using a variety of statistical techniques, instead of solely using simple versions of linear regression or generalized linear models as is customary. Here, we exemplify and compare the use of modern regression techniques which have very different conceptual backgrounds and aims (negative binomial models, zero-inflated regression, and expectile regression), and which have rarely been applied to behavioural data in biological invasion studies. We show that our data display overdispersion, which is frequent in ecological and behavioural data, and that conventional statistical methods such as Poisson generalized linear models are inadequate in this case. Expectile regression is similar to quantile regression and allows the estimation of functional relationships between variables for all portions of a probability distribution and is thus well suited for modelling boundaries in polygonal relationships or cases with heterogeneous variances which are frequent in behavioural data. We applied various statistical techniques to aggression in invasive mosquitofish, Gambusia holbrooki, and the concomitant vulnerability of native toothcarp, Aphanius iberus, in relation to individual size and sex. We found that medium sized male G. holbrooki carry out the majority of aggressive acts and that smaller and medium size A. iberus are most vulnerable. Of the regression techniques used, only negative binomial models and zero-inflated and expectile Poisson regressions revealed these relationships.  相似文献   
4.
5.
The pulsatile flow and gas transport of a Newtonian passive fluid across an array of cylindrical microfibers are numerically investigated. It is related to an implantable, artificial lung where the blood flow is driven by the right heart. The fibers are modeled as either squared or staggered arrays. The pulsatile flow inputs considered in this study are a steady flow with a sinusoidal perturbation and a cardiac flow. The aims of this study are twofold: identifying favorable array geometry/spacing and system conditions that enhance gas transport; and providing pressure drop data that indicate the degree of flow resistance or the demand on the right heart in driving the flow through the fiber bundle. The results show that pulsatile flow improves the gas transfer to the fluid compared to steady flow. The degree of enhancement is found to be significant when the oscillation frequency is large, when the void fraction of the fiber bundle is decreased, and when the Reynolds number is increased; the use of a cardiac flow input can also improve gas transfer. In terms of array geometry, the staggered array gives both a better gas transfer per fiber (for relatively large void fraction) and a smaller pressure drop (for all cases). For most cases shown, an increase in gas transfer is accompanied by a higher pressure drop required to power the flow through the device.  相似文献   
6.
    
The functional state of the neurovascular unit (NVU), composed of the blood–brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU‐impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell‐specific metabolic and proteomic responses to Meth.  相似文献   
7.
T Yee 《BioTechniques》1991,10(6):786-789
A computer program for digital image processing is described which can be implemented using scanning densitometer hardware pre-existing in most biology departments plus computer video hardware which may either pre-exist in the biology department or would represent a moderate upgrade over an already planned computer purchase. The primary purpose of this computer program is to provide contrast enhancement of faint or low contrast autoradiograph images and to implement background subtraction and digital smoothing methods which permit visualization of blurry electrophoresis bands against noisy backgrounds. However, the program also has modest editing capabilities that allow its use in the routine preparation of images for publication. Finally, the program has facilities for deblurring, edge enhancement and multiple image averaging, which give it usefulness in other forms of photographic analysis.  相似文献   
8.
Adhesive interactions of platelet integrin alpha(IIb)beta3 with fibrinogen and fibrin are central events in hemostasis and thrombosis. However, the mechanisms by which alpha(IIb)beta3 binds these ligands remain incompletely understood. We have recently demonstrated that alpha(IIb)beta3 binds the gamma365-383 sequence in the gammaC-domain of fibrin(ogen). This sequence contains neither the AGDV nor the RGD recognition motifs, known to bind alpha(IIb)beta3, suggesting the different specificity of the integrin. Here, using peptide arrays, mutant fibrinogens, and recombinant mutant gammaC-domains, we have examined the mechanism whereby alpha(IIb)beta3 binds gamma365-383. The alpha(IIb)beta3-binding activity was localized within gamma370-381, with two short sequences, gamma370ATWKTR375 and gamma376WYSMKK381, being able to independently bind the integrin. Furthermore, recognition of alpha(IIb)beta3 by gamma370-381 depended on four basic residues, Lys373, Arg375, Lys380, and Lys381. Simultaneous replacement of these amino acids and deletion of the gamma408AGDV411 sequence in the recombinant gammaC-domain resulted in the loss of alpha(IIb)beta3-mediated platelet adhesion. Confirming the critical roles of the identified residues, abnormal fibrinogen Kaiserslautern, in which gammaLys380 is replaced by Asn, demonstrated delayed clot retraction and impaired alpha(IIb)beta3 binding. Also, a mutant recombinant fibrinogen modeled after the naturally occurring variant Osaka V (gammaArg375 --> Gly) showed delayed clot retraction and reduced binding to purified alpha(IIb)beta3. These results identify the gamma370-381 sequence of fibrin(ogen) as the binding site for alpha(IIb)beta3 involved in platelet adhesion and clot retraction and define the new recognition specificity of this integrin.  相似文献   
9.
Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号