首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  28篇
  2021年   1篇
  2019年   2篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1999年   2篇
  1991年   2篇
  1987年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有28条查询结果,搜索用时 0 毫秒
1.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed.  相似文献   
2.
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.  相似文献   
3.
The widespread distribution of lentiviruses among African primates, and the lack of severe pathogenesis in many of these natural reservoirs, are taken as evidence for long-term co-evolution between the simian immunodeficiency viruses (SIVs) and their primate hosts. Evidence for positive selection acting on antiviral restriction factors is consistent with virus-host interactions spanning millions of years of primate evolution. However, many restriction mechanisms are not virus-specific, and selection cannot be unambiguously attributed to any one type of virus. We hypothesized that the restriction factor TRIM5, because of its unique specificity for retrovirus capsids, should accumulate adaptive changes in a virus-specific fashion, and therefore, that phylogenetic reconstruction of TRIM5 evolution in African primates should reveal selection by lentiviruses closely related to modern SIVs. We analyzed complete TRIM5 coding sequences of 22 Old World primates and identified a tightly-spaced cluster of branch-specific adaptions appearing in the Cercopithecinae lineage after divergence from the Colobinae around 16 million years ago. Functional assays of both extant TRIM5 orthologs and reconstructed ancestral TRIM5 proteins revealed that this cluster of adaptations in TRIM5 specifically resulted in the ability to restrict Cercopithecine lentiviruses, but had no effect (positive or negative) on restriction of other retroviruses, including lentiviruses of non-Cercopithecine primates. The correlation between lineage-specific adaptations and ability to restrict viruses endemic to the same hosts supports the hypothesis that lentiviruses closely related to modern SIVs were present in Africa and infecting the ancestors of Cercopithecine primates as far back as 16 million years ago, and provides insight into the evolution of TRIM5 specificity.  相似文献   
4.
Simian immunodeficiency viruses of sooty mangabeys (SIVsm) are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5α, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission.  相似文献   
5.
6.
7.
Primates have long been a favorite subject of evolutionary biologists, and in recent decades, have come to play an increasingly important role in biomedical research, including comparative genetics and phylogenetics. The growing list of annotated genome databases from nonhuman primate species is expected to aid in these endeavors, allowing many analyses to be performed partially or even entirely in silico. However, whole genome sequence data are typically derived from only one, or at best a few, individuals. As a consequence, information in the databases does not capture variation within species or populations, nor can the sequence of one individual be taken as representative across all loci. Furthermore, the vast majority of primate species have not been sequenced, and only a small percentage of species are currently slated for whole genome sequencing efforts. Finally, for many species data on patterns and levels of RNA expression will be lacking. Thus, there will continue to be a demand for samples from nonhuman primates as raw material for genetic and phylogenetic analyses. Gathering such samples can be complicated, with many legal and practical barriers to obtaining samples in the field or transporting samples between research centers and across borders. Here, we provide basic but critical advice for those initiating studies requiring genetic material from nonhuman primates, including some guidance on how to locate and obtain samples, brief overviews of common protocols for handling and processing samples, and a table of useful links for locating resources related to the acquisition of samples. We also advocate for the creation of curated banks of nonhuman primate samples, particularly renewable sources of genetic material such as immortalized cell lines or fibroblasts, to reduce the need for repeated or redundant sampling from living animals.  相似文献   
8.
The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.  相似文献   
9.
Biohybrid light-harvesting architectures can be constructed that employ native-like bacterial photosynthetic antenna peptides as a scaffold to which synthetic chromophores are attached to augment overall spectral coverage. Synthetic bacteriochlorins are attractive to enhance capture of solar radiation in the photon-rich near-infrared spectral region. The effect of the polarity of the bacteriochlorin substituents on the antenna self-assembly process was explored by the preparation of a bacteriochlorin–peptide conjugate using a synthetic amphiphilic bacteriochlorin (B1) to complement prior studies using hydrophilic (B2, four carboxylic acids) or hydrophobic (B3) bacteriochlorins. The amphiphilic bioconjugatable bacteriochlorin B1 with a polar ammonium-terminated tail was synthesized by sequential Pd-mediated reactions of a 3,13-dibromo-5-methoxybacteriochlorin. Each bacteriochlorin bears a maleimido-terminated tether for attachment to a cysteine-containing analog of the Rhodobacter sphaeroides antenna β-peptide to give conjugates β-B1, β-B2, and β-B3. Given the hydrophobic nature of the β-peptide, the polarity of B1 and B2 facilitated purification of the respective conjugate compared to the hydrophobic B3. Bacteriochlorophyll a (BChl a) associates with each conjugate in aqueous micellar media to form a dyad containing two β-peptides, two covalently attached synthetic bacteriochlorins, and a datively bonded BChl-a pair, albeit to a limited extent for β-B2. The reversible assembly/disassembly of dyad (β-B2/BChl)2 was examined in aqueous detergent (octyl glucoside) solution by temperature variation (15–35 °C). The energy-transfer efficiency from the synthetic bacteriochlorin to the BChl-a dimer was found to be 0.85 for (β-B1/BChl)2, 0.40 for (β-B2/BChl)2, and 0.85 for (β-B3/BChl)2. Thus, in terms of handling, assembly and energy-transfer efficiency taken together, the amphiphilic design examined herein is more attractive than the prior hydrophilic or hydrophobic designs.  相似文献   
10.
We have investigated the primary photochemistry of two symmetry-related mutants of Rhodobacter sphaeroides in which the histidine residues associated with the central Mg2+ ions of the two bacteriochlorophylls of the dimeric primary electron donor (His-L173 and His-M202) have been changed to leucine, affording bacteriochlorophyll (BChl)/bacteriopheophytin (BPh) heterodimers. Reaction centers (RCs) from the two mutants, (L)H173L and (M)H202L, have remarkably similar spectral and kinetic properties, although they are quite different from those of wild-type RCs. In both mutants, as in wild-type RCs, electron transfer to BPhL and not to BPhM is observed. These results suggest that asymmetry in the charge distribution of the excited BChl dimer (P*) in wild-type RCs (due to differing contributions of the two opposing intradimer charge-transfer states) contributes only modestly to the directionality of electron transfer. The results also suggest that differential orbital overlap of the two BChls of P with the chromophores on the L and M polypeptides does not contribute substantially to preferential electron transfer to BPhL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号