首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   59篇
  2023年   2篇
  2022年   8篇
  2021年   12篇
  2020年   15篇
  2019年   10篇
  2018年   7篇
  2017年   8篇
  2016年   16篇
  2015年   29篇
  2014年   23篇
  2013年   31篇
  2012年   39篇
  2011年   41篇
  2010年   23篇
  2009年   19篇
  2008年   32篇
  2007年   34篇
  2006年   25篇
  2005年   27篇
  2004年   16篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1996年   16篇
  1995年   10篇
  1994年   12篇
  1993年   11篇
  1992年   12篇
  1991年   15篇
  1990年   7篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1971年   2篇
  1966年   1篇
  1959年   1篇
  1931年   1篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
1.
The ability of epithelia to migrate and cover wounds is essential to maintaining their functions as physical barriers. Wounding induces many cues that may affect the transition to motility, including the immediate mechanical perturbation, release of material from broken cells, new interactions with adjacent extracellular matrix, and breakdown of physical separation of ligands from their receptors. Depending on the exact nature of wounds, some cues may be present only transiently or insignificantly. In many epithelia, activation of the epidermal growth factor receptor (EGFR) is a central event in induction of motility, and we find that its continuous activation is required for progression of healing of wounds in sheets of corneal epithelial cells. Here, we examine the hypothesis that edges, which are universally and continuously present in wounds, are a cue. Using a novel culture model we find that their presence is sufficient to cause activation of the EGFR and increased motility of cells in the absence of other cues. Edges that are bordered by agarose do not induce activation of the EGFR, indicating that activation is not due to loss of any specific type of cell–cell interaction but rather due to loss of physical constraints.  相似文献   
2.
The effect of varied supply of P (2.5× 10−5 to 6× 10−4 M) and Zn (0 to 10−6 M) on uptake and concentrations of P and Zn was studied in cotton ( Gossypium hirsutum L. cv. Deltapine 15/21) grown in nutrient solution under controlled environmental conditions. At a given Zn supply, increasing levels of P had no significant effect on the concentrations of total Zn in plants. However, increasing levels of P induced or enhanced visual Zn deficiency symptoms when the Zn concentration in the nutrient solution was low. The concentrations of water-soluble Zn in roots and shoots constituted 60% of the total Zn concentrations for plants grown with low P and 30% for plants grown with high P. The concentration of water-soluble Zn in leaves, but not total Zn, was closely correlated with visual Zn deficiency symptoms, levels of chlorophyll, super oxide dismutase and membrane permeability. The critical deficiency concentration of water-soluble Zn in cotton leaves was in the range of 6 to 7 μg (g dry weight)−1 or about 1.0 μg (g fresh weight)−1. The results show that high P concentrations in plant tissue decrease the physiological availability of Zn. Water-soluble Zn in the tissue appears to be a suitable indicator for Zn nutritional status in general and phosphorus-induced Zn deficiency in particular. Also in field-grown orange trees (Citrus sinensis) visual Zn deficiency symptoms in leaves were closely related to the concentration of water-soluble Zn.  相似文献   
3.
White clover (Trifolium repens L.) plants were grown in a calcareous soil in pots with three compartments, a central one for root growth and two outer ones for growth of vesicular-arbuscular (VA) mycorrhizal (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe) hyphae (hyphal compartments). Phosphorus (P) was applied at three levels (0, 20 and 50 mg kg−1 soil) in the outer compartments in mycorrhizal treatments. Root and shoot dry weight were increased in mycorrhizal plants with hyphal access to outer compartments. Growth of the mycorrhizal hyphae in the outer compartments was not significantly affected by variation in P level in these compartments. However, both concentration and amount of P in roots and shoots sharply increased with increasing P supply in the outer (hyphal) compartments. With increasing P levels the calculated delivery of P by the hyphae from the outer compartments increased from 34% to 90% of total P uptake. Hyphal access to the outer compartments also significantly increased both concentration and quantity of Cu in the plants. The calculated delivery of Cu by the hyphae from the outer compartments ranged from 53% to 62% of total Cu uptake, irrespective of the P levels and the amounts of P taken up and transported by the hyphae. However, the distribution of Cu over roots and shoots was largely dependent on P levels. With increase in P level in the outer compartments the calculated hyphal contribution to the total amount of Cu in the shoots increased from 12% to 58%, but decreased in the roots from 75% to 46%. In conclusion, uptake and transport by VA-mycorrhizal hyphae may contribute substantially not only to P nutrition, but also to Cu nutrition of the host.  相似文献   
4.
Metaphase chromosomes of Syrian hamster and BALB/c mice were hybridized in situ with radiolabeled probes derived from cloned intracisternal A-particle (IAP) genes of the corresponding species. The DNAs of these species are known to contain about 900 and 1,000 copies, respectively, of the retrovirus-like IAP sequence elements per haploid genome. Multiple IAP sequences were found on all chromosomes of both hamster and mouse. In the hamster, more than half of the IAP sequences were located in regions of non-centromeric constitutive heterochromatin, at an average concentration per unit chromosome length 5 times greater than in the euchromatic regions. The other dispersed sequences showed marked local variations in concentration along the chromosome lengths; both discrete foci and large grain clusters were observed as well as regions apparently lacking IAP sequences. Within the resolution of the techniques, IAP sequences appeared to be more evenly distributed over the mouse chromosomes; however, some prominent variations in concentration were seen. The number of potentially active IAP genes in the Syrian hamster, and by extension in the mouse, may be restricted by the preferential location of IAP sequences in genetically inert regions of the genome.  相似文献   
5.
Potato plants ( Solanum tuberosum L. ev. Ostara) were grown in water culture and the growth rate of individual tubers was measured daily or at two day intervals. Tubers of different growth rate and/or different age (days after tuberization) were harvested and analysed for indolylacetic acid (IAA) and abscisic acid (ABA). Within individual tubers the IAA content decreases from the apical to the basal part of the tuber. Tuber age and corresponding fresh weight are negatively correlated with the endogenous IAA content. If, however, individual tubers of comparable age but different growth rates are compared, a significant positive correlation between growth rate and IAA content is revealed, while ABA showed a significant negative correlation with growth rate. Removal of all fast-growing tubers from individual plants causes an increase in the growth rate of the remaining tubers within 3–4 days. This coincides with a particularly steep increase in IAA content. The data support the idea that endogenous IAA content may be one factor responsible for controlling the growth rate ("sink-activity ") of individual tubers.  相似文献   
6.
Iron deficiency in peanuts (Arachis hypogeae L.) caused an increase in release of caffeic acid, a higher rate of FeIII reduction, and increased rates of both FeIII chelate splitting and iron uptake.

Experiments on FeIII reduction by phenolics (in vitro experiments) and by roots of Fe-deficient peanuts exclude the direct involvement of released phenolics in FeIII reduction by roots: FeIII reduction by phenolics had a pH optimum higher than 8.0 and was strongly dependent on the concentration and the stability of the supplied FeIII chelates. In contrast, FeIII reduction by roots of Fe-deficient peanuts had a pH optimum of about 5.0 and was less dependent on the stability of the supplied FeIII chelates. Furthermore, the observed release of phenolics into nutrient solution would have to be at least 200 times higher to attain the reduction rates of roots of Fe-deficient peanuts. The results of these experiments support the idea of an enzymic reduction of FeIII on the plasmalemma of cortical cells of roots.

  相似文献   
7.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
8.
To investigate the recognition of Zn-phytosiderophores by the putative Fe-phytosiderophore transporter in maize (Zea mays L.) roots, short-term uptake of 65Zn-labeled phytosiderophores was compared in the Fe-efficient maize cultivar Alice and the maize mutant ys1 carrying a defect in Fe-phytosiderophore uptake. In ys1, uptake and translocation rates of Zn from Zn-phytosiderophores were one-half of those in Alice, but no genotypical difference was found in Zn uptake and translocation from other Zn-binding forms. In ys1 and in tendency also in Alice, Zn uptake decreased with increasing stability constant of the chelate in the order: ZnSO4 [greater than or equal to] Zn-desferrioxamine > Zn-phytosiderophores > Zn-EDTA. Adding a 500-fold excess of free phytosiderophores over Zn to the uptake solution depressed Zn uptake in ys1 almost completely. In uptake studies with double-labeled 65Zn-14C-phytosiderophores, ys1 absorbed the phytosiderophore at similar rates when supplied as a Zn-chelate or the free ligand. By contrast, in Alice 14C-phytosiderophore uptake from the Zn-chelate was 2.8-fold higher than from the free ligand, suggesting that Alice absorbed the complete Zn-phytosiderophore complex via the putative plasma membrane transporter for Fe-phytosiderophores. We propose two pathways for the uptake of Zn from Zn-phytosiderophores in grasses, one via the transport of the free Zn cation and the other via the uptake of nondissociated Zn-phytosiderophores.  相似文献   
9.
Twentyfive cyanobacterial blooms in Lake Ladoga and adjacent water bodies were studied in the summer of 1990–1992. Toxicity of the water bloom material for mice was detected in 9 cases. The maximal tolerable doses (MTD) of the material extracted from biomass varied within 3–30 mg kg–1 mouse body weight; 50% lethal doses (LD50) were within 45–125 mg kg–1. Toxic water blooms were registered in Karelian lakes and in the Neva Bay, Gulf of Finland. Cyanobacterial samples collected on the eastern coast of Lake Ladoga proved to be non-toxic. The species identified in toxic bloom material included Anabaena circinalis, A. flos-aquae, A. lemmermannii, Anabaena sp., Aphanizomenonflos-aquae, Gloeotrichia echinulata, G. pisum, Microcystis aeruginosa and Oscillatoria sp. These data suggest that toxic forms of cyanobacteria are widespread in Karelian lakes belonging to the drainage basin of Lake Ladoga.  相似文献   
10.
In pot experiments cuttings of grapevine rootstock cultivar 5C were grown on a soil from a grapevine nursery affected with replant disease (replant soil) and on a similar soil that had not been planted with grapevines before (non-replant soil). Plants were also inoculated with the vesicular-arbuscular (VA) mycorrhizal fungus,Glomus mosseae, or left without mycorrhizal fungus inoculation. Shoot and root growth, mycorrhization of roots and numbers of total aerobic bacteria and fluorescent pseudomonads on the rhizoplane of grapevines were determined at several sampling dates. On replant soil, numbers of fluorescent pseudomonads on the rhizoplane were higher compared to non-replant soil, before differences in shoot and root weight between replant and non-replant soil occurred. Without inoculation withG. mosseae, the mycorrhization of roots was much lower on replant soil (13%) than on non-replant soil (51%). On replant soil, inoculation withG. mosseae increased mycorrhization to 39% and increased shoot length, leaf area and shoot weight. The beneficial effect of VA-fungus inoculation on replant soil was not due to increased nutrient concentrations in leaves. On replant soil, the inoculation withG. mosseae reduced the number of fluorescent pseudomonads on rhizoplane of grapevine, while the numbers of total aerobic bacteria were not influenced by inoculation withG. mosseae. These results suggest a direct or indirect role of fluorescent pseudomonads in replant disease of grapevine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号