首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   4篇
  2021年   2篇
  2017年   2篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   6篇
  2002年   2篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
To examine the effects of chilling of leaves of cucumber (Cucumissativus L.) in moderate light on the coupling state of thylakoidsin situ, changes in fluorescence, changes in light scatteringand flash-induced changes in absorbance at 518 nm were examinedin intact leaves. After chilling of leaves at 5?C in the lightfor 5 h, the non-photochemical quenching of fluorescence, ameasure of energisation of thylakoids, was largely suppressed.The treatment also caused a suppression of light-induced changesin the light scattering by leaves, which depends on the formationof a pH gradient across thylakoid membranes. When thylakoidswere prepared by very gentle methods from the leaves chilledin the light, through a step of preparation of intact chloro-plasts,the transport of electrons from H2O to ferricyanide was uncoupled,being insensitive to an uncoupler, methylamine. These data provide consistent evidence that the thylakoids areuncoupled in situ by the chilling of leaves in the light and,as a consequence of the uncoupling, the energisation of themembranes is suppressed. However, the decay of the flash-inducedchange in absorbance at 518 nm in leaves was not markedly acceleratedby the treatment. The thylakoids isolated from leaves chilledin the light, which were in the uncoupled state, also did notshow a rapid decay, unless an efficient uncoupler such as gramicidinwas added. These results suggest that even a considerable uncouplingof thylakoids, brought about by chilling of leaves in the light,is not sufficient to cause a marked acceleration of the decayof the flash-induced change in absorbance at 518 nm. Therefore,analysis at 518 nm is not always a sensitive method for assessingthe coupling state of thylakoids. (Received July 1, 1991; Accepted October 4, 1991)  相似文献   
2.
Treatment of spinach Photosystem I particles with detergentsinduced an apparent blue shift of chlorophyll at 690 nm inthe difference spectrum of P-700. As a consequence of the bandshift, the differential absorption coefficient of P-700 wasincreased from 63 to 87 mM–1 .cm–1. A curve waspresented, with which changes in the apparent differential absorptioncoefficient of P-700 can be estimated by measuring magnitudesof light-induced absorption decreases at 680 nm and 700 nm.The curve was compared with that for cyanobacterial preparationsand the mechanism of the detergent-induced band shift was discussed. (Received July 11, 1990; Accepted August 23, 1990)  相似文献   
3.
To clarify the way in which the light available for growth affectsrespiration in leaves of sun and shade plants, we examined therespiratory properties of mature leaves of Spinacia oleraceaL., a sun species, and of Alocasia macrorrhiza (L.) G. Don.,a shade species, that had been grown at various irradiances.In leaves of S. oleracea, the respiratory rates, on a dry massbasis, decreased with time during the night, and the higherwas the growth irradiance during the day, the higher was therespiratory rate. The marked decreases in the respiratory rateduring the night were accompanied by decreases in the concentrationof carbohydrates in the leaves. By contrast, the respiratoryrates of leaves of A. macrorrhiza were virtually constant throughoutthe night and the absolute rates were lower than those of S.oleracea even though the absolute value of the concentrationof carbohydrates and its decrease at night resembled to thosein S. oleracea. The maximum activities of respiratory enzymeswere also similar to those in S. oleracea. However, the leavesof A. macrorrhiza contained less soluble protein than thoseof S. oleracea. These results suggest that, in S. oleracea,the concentration of carbohydrates might determine the respiratoryrate while such is not the case in A. macrorrhiza. The lowerrespiratory rates in A. macrorrhiza might be due to a lowerdemand for ATP. (Received November 29, 1995; Accepted February 15, 1996)  相似文献   
4.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   
5.
Minoda A  Sonoike K  Okada K  Sato N  Tsuzuki M 《FEBS letters》2003,553(1-2):109-112
Photosystem (PS) II activity of a sulfoquinovosyl diacylglycerol (SQDG)-deficient mutant (hf-2) of Chlamydomonas was partially decreased compared with that of wild-type. The susceptibility to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modified in the mutant. Photometric measurements in the isolated thylakoid membranes of hf-2 revealed that the lowered activity in the mutant was derived from a decrease in the efficiency of the electron donation from water to tyrosine Z, not from the efficiency of the electron transport from Q(A) to Q(B). This result was confirmed by the decay kinetics of chlorophyll fluorescence determined in vivo. We conclude that SQDG contributes to maintaining the conformation of PSII complexes, particularly that of D1 polypeptides, which are necessary for maximum activities in Chlamydomonas.  相似文献   
6.
7.
HvLhcb1 a major light-harvesting chlorophyll a/b-binding protein in barley, is a critical player in sustainable growth under Fe deficiency. Here, we demonstrate that Fe deficiency induces phosphorylation of HvLhcb1 proteins leading to their migration from grana stacks to stroma thylakoid membranes. HvLhcb1 remained phosphorylated even in the dark and apparently independently of state transition, which represents a mechanism for short-term acclimation. Our data suggest that the constitutive phosphorylation-triggered translocation of HvLhcb1 under Fe deficiency contributes to optimization of the excitation balance between photosystem II and photosystem I, the latter of which is a main target of Fe deficiency.  相似文献   
8.
9.
To avoid the photodamage, cyanobacteria regulate the distribution of light energy absorbed by phycobilisome antenna either to photosystem II or to photosystem I (PSI) upon high light acclimation by the process so-called state transition. We found that an alternative PSI subunit, PsaK2 (sll0629 gene product), is involved in this process in the cyanobacterium Synechocystis sp. PCC 6803. An examination of the subunit composition of the purified PSI reaction center complexes revealed that PsaK2 subunit was absent in the PSI complexes under low light condition, but was incorporated into the complexes during acclimation to high light. The growth of the psaK2 mutant on solid medium was inhibited under high light condition. We determined the photosynthetic characteristics of the wild type strain and the two mutants, the psaK1 (ssr0390) mutant and the psaK2 mutant, using pulse amplitude modulation fluorometer. Non-photochemical quenching, which reflects the energy transfer from phycobilisome to PSI in cyanobacteria, was higher in high light grown cells than in low light grown cells, both in the wild type and the psaK1 mutant. However, this change of non-photochemical quenching during acclimation to high light was not observed in the psaK2 mutant. Thus, PsaK2 subunit is involved in the energy transfer from phycobilisome to PSI under high light condition. The role of PsaK2 in state transition under high light condition was also confirmed by chlorophyll fluorescence emission spectra determined at 77 K. The results suggest that PsaK2-dependent state transition is essential for the growth of this cyanobacterium under high light condition.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号