首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1998年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Type VIII collagen is a major component of Descemet's membrane, the specialized basement membrane of corneal endothelial cells. Sequence analysis of a cDNA isolated from a library made with mRNA from rabbit corneal endothelial cells has indicated that type VIII molecules contain a polypeptide chain, alpha 1(VIII), consisting of a short triple-helical domain of 454 amino acid residues flanked by non-triple-helical domains of 117 and 173 amino acid residues at the amino and carboxyl ends, respectively (Yamaguchi, N., Benya, P. D., van der Rest, M., and Ninomiya, Y. (1989) J. Biol. Chem. 264, 16022-16029). The sequence of alpha 1(VIII) is strikingly similar to that of alpha 1(X) collagen, a product of hypertrophic chondrocytes. Also, characterization of the alpha 1(VIII) and alpha 1(X) collagen genes has shown that they are quite similar in their exon organization. It has been concluded, therefore, that they are homologous members of a distinct subclass of collagen genes (Yamaguchi, N., Mayne, R., and Ninomiya, Y. (1991) J. Biol. Chem. 266, 4508-4513). We have given this subclass the name short chain collagens because of the relatively small size of the triple-helical domain. In the present study, we report on the identification and characterization of a collagen gene encoding a polypeptide which is co-expressed with the alpha 1(VIII) chain in corneal endothelial cells. This collagen chain contains a triple-helical and a carboxyl non-triple-helical domain encoded by a single, large exon both in mice and humans. We conclude, therefore, that the genes encodes a novel member of the short chain collagen family, and we have given this chain the designation alpha 2(VIII) collagen. By in situ hybridization we demonstrate that the alpha 2(VIII) gene is located in the p32.3-p34.3 region of the short arm of chromosome 1.  相似文献   
2.
Central neuropeptides play roles in many physiologic regulations through the autonomic nervous system. We have demonstrated that central thyrotropin-releasing hormone (TRH), one of neuropeptides, induces a stimulation of hepatic proliferation through vagal-cholinergic pathways. Since cAMP is known to play an important role in the hepatic proliferation, effect of central TRH on hepatic cAMP was investigated. Rats were intracisternally injected with either a TRH analog, RX-77368 (1-100 ng), or saline. The liver was removed 2-72 h after the TRH analog and hepatic cAMP content was determined by radioimmunoassay. In some experiments, pretreatment with hepatic vagotomy, atropine methyl nitrate, or 6-hydroxydopamine (6-OHDA) was performed. Hepatic cAMP was dose-dependently increased by intracisternal TRH analog (5-100 ng) with a peak response occurring 12 h postinjection. The central TRH-induced increase in hepatic cAMP was abolished by vagotomy, atropine and indomethacin, but not by 6-OHDA. Intravenous injection of the TRH analog (10 ng) did not affect hepatic cAMP. These results demonstrate that TRH acts in the brain to increase hepatic cAMP through vagal-cholinergic and prostaglandin-dependent pathways, suggesting that central TRH modulates hepatic functions through cAMP-mediated signaling pathways.  相似文献   
3.
Central administration of thyrotropin-releasing hormone (TRH) enhanced pancreatic blood flow in animal models. TRH nerve fibers and receptors are localized in the dorsal vagal complex (DVC), and retrograde tracing techniques have shown that pancreatic vagal nerves arise from the DVC. However, nothing is known about the central sites of action for TRH to elicit the stimulation of pancreatic blood flow. Effect of microinjection of a TRH analog into the DVC on pancreatic blood flow was investigated in urethane-anesthetized rats. After measuring basal flow, a stable TRH analog (RX-77368) was microinjected into the DVC and pancreatic blood flow response was observed for 120 min by laser Doppler flowmetry. Vagotomy of the several portions, or pretreatment with atoropine methyl nitrate or N(G)-nitro-l-arginine-methyl ester was performed. Microinjection of RX-77368 (0.1-10 ng) into the left or right DVC dose-dependently increased pancreatic blood flow. The stimulation of pancreatic blood flow by RX-77368 microinjection was eliminated by the same side of cervical vagotomy as the microinjection site or subdiaphragmatic vagotomy, but not by the other side of cervical vagotomy. The TRH-induced stimulation of pancreatic blood flow was abolished by atropine or N(G)-nitro-l-arginine-methyl ester. These results suggest that TRH acts in the DVC to stimulate pancreatic blood flow through vagal-cholinergic and nitric oxide dependent pathways, indicating that neuropeptides may act in the specific brain nuclei to regulate pancreatic function.  相似文献   
4.
Central neuropeptides play a role in many physiological functions through the autonomic nervous system. We have recently demonstrated that central injection of a thyrotropin-releasing hormone (TRH) analog increases pancreatic blood flow through vagal and nitric oxide-dependent pathways. In this study, the central effect of a TRH analog on experimental acute pancreatitis was investigated in rats. Acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 microg/kg) at 1-h interval. Either stable TRH analog, RX 77368 (5-100 ng), or saline was injected intracisternally 15 min before the first cerulein injection under ether anesthesia. Serum amylase level was measured before and 5 h after the first cerulein injection. Pancreatic wet/dry weight ratio and histological changes were also evaluated. Intracisternal TRH analog inhibited cerulean-induced elevation of serum amylase level, increase in pancreatic wet/dry weight ratio and pancreatic histological changes, such as interstitial edema, inflammation and vacuolization. The pancreatic cytoprotection induced by central TRH analog was abolished by subdiaphragmatic vagotomy and N(G)-nitro-L-arginine-methyl ester (L-NAME), but not by 6-hydroxydopamine (6-OHDA). Intravenous administration of the TRH analog did not influence cerulein-induced acute pancreatitis. These results indicate that the TRH analog acts in the central nervous system to protect against acute pancreatitis through vagal and nitric oxide-dependent pathways.  相似文献   
5.
6.
Monoclonal antibodies to human (8 clones) and rat (12 clones) prolyl 4-hydroxylase [EC 1.14.11.2] were prepared and characterized as regards subclass, subunit specificity, inhibition and crossreactivity. Among the antibodies to the human enzyme, four clones showed the IgG1 subclass, two IgA, one IgG2b, and one IgM. Four clones reacted with the alpha subunit of the enzyme, while the others reacted with the beta subunit. The enzymatic activity was inhibited by four clones. Five clones crossreacted with the rat enzyme. One clone inhibited the rat enzyme. Among the antibodies to the rat enzyme, seven clones showed the IgG1 subclass, four IgG2a and one IgG2b. Seven clones reacted with the alpha subunit, and four with the beta subunit. One reacted with neither subunit. The enzymatic activity was inhibited by seven clones. Seven clones crossreacted with the human enzyme. Three clones inhibited the human enzyme.  相似文献   
7.
8.
Central neuropeptides play a role in physiological regulation through the autonomic nervous system. Thyrotropin-releasing hormone (TRH) is a neuropeptide distributed throughout the central nervous system and acts as a neurotransmitter to regulate gastric and hepatic functions through vagal-cholinergic pathways. In this study, the central effect of TRH on pancreatic blood flow was investigated in urethane-anesthetized rats. Pancreatic blood flow was determined by laser Doppler flowmetery. After measurement of basal blood flow, a stable TRH analog, RX 77368 (1-50 ng) or saline was injected intracisternally. Pancreatic blood flow was observed for 120 min thereafter. In some experiments, pretreatment with atropine methyl nitrate (0.15 mg/kg, i.p.), NG-nitro-L-arginine-methyl ester (10 mg/kg, i.v.), or 6-hydroxydopamine (6-OHDA;180 mg/kg, i.p.), or subdiaphragmatic vagotomy was performed. Intracisternal injection of TRH analog dose-dependently increased pancreatic blood flow with a peak response occurring 30 min after injection. The stimulatory effect of TRH analog on pancreatic blood flow was blocked by vagotomy, atropine, and NG-nitro-L-arginine-methyl ester, but not by 6-hydroxydopamine. Intravenous administration of the TRH analog did not influence pancreatic blood flow in the same animal model. These results indicate that TRH acts in the central nervous system to stimulate pancreatic blood flow through vagal-cholinergic and nitric oxide-dependent pathways.  相似文献   
9.
The subcellular localization of dystrophin and vinculin was investigated in cardiac muscle fibers and fibers of the conduction system of the chicken ventricle by immunofluorescence confocal microscopy. In ventricular cardiac muscle fibers, strong staining with antibody against dystrophin appeared as regularly arranged transverse striations at the sarcolemmal surface, and faint but uniform staining was seen in narrow strips between these striations. In fibers of the ventricular conduction system, the sarcolemma was stained uniformly with this antibody, but strong staining was found as regular striations in many areas and as scattered patches in other areas of the sarcolemma. These intensely stained striations and scattered patches of dystrophin were colocalized with those of vinculin. Because dystrophin striations were located at the level of Z bands of the underlying myofibrils, they were regarded as the concentration of this protein at costameres together with vinculin. In fibers of the conduction system, myofibrils were close to the sarcolemma where dystrophin and vinculin assumed a striated pattern, at some distance from the cell membrane where these proteins exhibited a patchy distribution, and distant from the sarcolemma where dystrophin was uniformly distributed. These data suggest that the distribution patterns of dystrophin reflect the degree of association between the sarcolemma and underlying myofibrils.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号