首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1990年   2篇
  1989年   3篇
  1985年   1篇
  1983年   2篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 46 毫秒
1.
Total proteins from a mouse embryo fibroblast cell line NIH/3T3, NIH/3T3 cells transformed by human activated c-Ha-ras (EJ-ras) oncogene (EJ-NIH/3T3), and the two flat revertant cell lines, R1 and R2, were analyzed by two-dimensional gel electrophoresis (IEF and NEPHGE). Several hundred polypeptides were resolved as seen by silver staining. Common alterations in four polypeptide spots were observed in the revertants when compared with NIH/3T3 and EJ-NIH/3T3 cells. In these alterations, a new polypeptide spot p92-5.7 (designated by molecular weight x 10(-3) and pI) was detected only in the revertants and not in NIH/3T3 and EJ-NIH/3T3 cells. Furthermore, the expression level of p92-5.7 seemed to be associated with the flat morphology and the reduced tumorigenicity of the revertants. Polypeptide p92-5.7 was also not detected in the total proteins extracted from BALB/3T3 cells, NIH Swiss mouse primary embryo fibroblasts, NRK (normal rat kidney) cells, and L6 (rat myoblast). Subcellular fractionation of total protein from R1 cells revealed that the p92-5.7 was present in the cytosol. Western blot analysis using an anti-gelsolin antibody demonstrated that the p92-5.7 might be a variant form of gelsolin which is thought to be an actin regulatory protein or a gelsolin-like polypeptide. These results may suggest that the expression of p92-5.7 detected only in the revertants is associated, at least in part, with the reversion. This may be the first demonstration of specific protein expression in the flat revertants.  相似文献   
2.
A rapid and convenient method was established for analysis of the N-linked carbohydrate chains of glycoproteins on nitrocellulose sheets. Proteins were separated by polyacrylamide gel electrophoresis, transferred to nitrocellulose sheets, reacted with peroxidase-coupled lectins, and detected by color development of the enzyme reaction. Four glycoproteins having N-linked oligosaccharide chains were used as test materials: Taka-amylase A (which has a high-mannose-type chain), ovalbumin (high-mannose-type chains and hybrid-type chains), transferrin (biantennary chains of complex type), and fetuin (triantennary chains of complex type and O-linked-type chains). Concanavalin A interacted with Taka-amylase A, transferrin, and ovalbumin but barely interacted with fetuin. After treatment of the glycoproteins on a nitrocellulose sheet with endo-beta-N-acetylglucosaminidase H, transferrin reacted with concanavalin A but Taka-amylase A and ovalbumin did not. Wheat germ agglutinin interacted with Taka-amylase A but not ovalbumin; therefore, they were distinguishable from each other. Fetuin and transferrin were detected by Ricinus communis agglutinin or peanut agglutinin after removal of sialic acid by treatment with neuraminidase or by weak-acid hydrolysis. Erythroagglutinating Phaseolus vulgaris agglutinin detected fetuin and transferrin. Thus, the combined use of these procedures distinguished the four different types of N-linked glycoproteins. This method was also applied to the analysis of membrane glycoproteins from sheep red blood cells. The terminally positioned sugars of sialic acid, alpha-fucose, alpha-galactose, and alpha-N-acetylgalactosamine were also detected with lectins from Limulus polyphemus, Lotus tetragonolobus, Maclura pomifera, and Dolichos biflorus, respectively.  相似文献   
3.
This paper reports the nature of abnormally expressed Forssman (F) antigen in the lymph node cells of MRL/MpJ-lpr/lpr, autoimmune mice, and also reports its autoantibody in sera. By acetylation study of the F antigen with [14C]acetic anhydride, we concluded that the F antigen was not a glycolipid but a glycoprotein. Several bands of F-active glycoproteins were identified on a nitrocellulose sheet after purification by an anti-F antibody affinity column. Hemolysis of SRBC by some sera from MRL/MpJ/lpr/lpr was inhibited by purified F glycoprotein and also by F glycolipid. The antibody in the serum, however, seemed to be more specific for F glycoproteins than F glycolipid, but the opposite was the case for rabbit anti-F glycolipid antibody. No significant difference of the SRBC hemolysis levels was observed between the sera from MRL/MpJ-lpr/lpr and its congenic MRL/MpJ-+/+ mice.  相似文献   
4.
The Forssman antigenicity of a chemically synthesized globopentaose was studied. Globopentaose at 40 ng showed strong inhibitory activity for the formation of a precipitin line between globopentaosylceramide (Forssman glycolipid) and anti-Forssman rabbit antiserum, while much more pentasaccharide (7 and 100 micrograms, respectively) was required to inhibit a 50% quantitative precipitin reaction and a hemolysis reaction. An immune complex of the 3H-labeled globopentaose with anti-Forssman antibody was hardly formed. Thus, the chemically synthesized globopentaose possesses the same antigenic specificity as globopentaosylceramide but it is difficult to achieve a stable complex with Forssman antibody.  相似文献   
5.
CD23, a low-affinity IgE receptor, is a type II transmembrane protein having a C-type lectin domain and it associates noncovalently with MHC class II on B cells. The results of our immunoprecipitation analysis suggest that CD23 co-exists with at least two additional molecules, surface immunoglobulin (sIg) and CD81 (and/or CD9), on the cell surface of L-KT9 cells (an Epstein-Barr virus (EBV)-transformed human B cell line). When both CD23 and sIg molecules were stimulated simultaneously by the corresponding antibodies, a large increase in CD81 in the immunoprecipitation was observed as compared with the case of stimulation by only one antibody. Simultaneous stimulation by anti-CD23 and anti-Ig may mimic the situation of B cells stimulated by an antigen/IgE complex. In addition, a large increase in MHC class II in the immunoprecipitation was also observed by cross-linking of CD23 with anti-CD23 and its second antibody as compared with the case of stimulation by anti-CD23 alone. The cross-linking of CD23 with anti-CD23 and its antibody may mimic the situation of B cells stimulated by an IgE/antigen/IgE complex. Therefore, the complex formation among CD23, sIg, MHC class II, and CD81 on the cell surface of L-KT9 cells by the antigen/IgE or IgE/antigen/IgE complex is most likely to be closely related to B cell regulatory events by signaling through sIg or MHC class II. Tetraspanins such as CD81 and CD9 are thought to be involved in the formation and the preservation of various different membrane complexes consisting of several functional proteins.  相似文献   
6.
We have already reported that the homogenate of the A/J mouse thymus shows a high sialidase activity at the neutral pH region and that in both soluble and membrane fractions optimal pH was 6.5–7 (Kijimoto-Ochiai et al., Glycoconj. J., 20:375–384, 2004). In the present study, we investigated the level of sialidase activities in the thymus of the SM/J mouse, a mouse strain that we know to have a Neu1a allele that reveals a low level of sialidase activity in the liver. We found that while in the A/J thymus the soluble sialidase activity at pH 6.5 was high, the SM/J thymus lacked all such activity. A QTL analysis of SMXA recombinant inbred strains showed that soluble sialidase activity correlated well with the D1Mit8/9 marker on chromosome 1. The murine whole DNA-sequence data and the results of our FISH analysis (Kotani et al., Biochem. Biophys. Res. Comm., 286:250–258, 2001) showed that this location is consistent with the position of Neu2 gene. We confirmed that it is hard to detect the Neu2 enzyme of the SM/J mouse thymus by an anti-Neu2 antibody using a Western blot analysis. We also found that while the mRNA expression of Neu2 was quite normal in the SM/J mouse liver, it was very low in the SM/J mouse thymus. We therefore conclude that the lack of soluble sialidase activity in the SM/J mouse thymus is due to the thymus-specific low expression level of the Neu2 gene. We have previously shown that the sialidase positive cell which contains the Mac-1 and immunoglobulin, and which is located sparsely in the corticomedullar region or medullary region of the A/J mouse thymus (Kijimoto-Ochiai et al., Glycoconj. J., 20:375–384, 2004). We showed now in this paper that the detection of this cell in the SM/J mouse thymus at pH 7.0 was difficult. We propose, therefore, to name the cell “Neu-medullocyte”.  相似文献   
7.
We have totally sequenced a cytosolic sialidase [EC 3.2.1.18] by RT-PCR from the murine thymus (murine thymic sialidase, MTS) which has a 1844-base length (encoding 385 amino acids including two sialidase motifs) and is the longest cytosolic sialidase ever reported. MTS has high and relatively low homologies with those of mammalian cytosolic sialidases from the mouse brain (99%), rat (91%), and human skeletal muscle (75%), and those of the mouse lysosomal (47%) and membrane-bound (51%) sialidases, respectively. Chromosomal mapping, being the first report of mouse cytosolic sialidase gene, showed that the MTS gene is localized to the distal part of mouse chromosome 1D and to rat chromosome 9q36. RT-PCR with the site-specific primers revealed that the coding region was expressed in all organs tested, but expressions including the 5'-UTR were barely detectable except for in the upper-thymic fraction. Also, soluble sialidase activity in the thymus was the highest of these organs. There were mRNA instability signals and AT-rich regions in 143 bp of MTS 5'-end.  相似文献   
8.
9.
The human CD23 molecule (low affinity receptor for IgE) has a C-type lectin domain, a reversed Arg-Gly-Asp (RGD) sequence near the C-terminus, and an "RGD-binding inhibitory peptide" at the root of the N-sugar chain. Three peptides were synthesized to determine their functions, i.e., #1, including an inverse RGD sequence near the C-terminus; #2, RGD-binding inhibitory peptides in the gpIIIa chain of platelet integrin gpIIb/IIIa; and #3, the inverse sequence located at the root of the N-sugar chain of CD23 which has homology to peptide 2. Among the three peptide, only peptide 3 inhibited aggregation of L-KT9 cells. Isotope-labeled peptides 1 and 3 bound to MHC class II molecules but peptide 1 did not bind to CD23 molecules. Peptide 3 showed a higher affinity to MHC class II than did peptide 1. Both peptides in CD23, therefore, seem to have interesting and important functions in relation to MHC class II molecules and also to CD23 molecules when CD23 on EBV-transformed B cells acts as a lectin in homotypic cell aggregation. The physiological function of CD23 was discussed from an evolutional point of view.  相似文献   
10.
The oligosaccharide chains of microheterogeneous bovine pancreatic DNAases were characterized by the lectin-nitrocellulose sheet method. The active fractions of the DNAases from column chromatography showed four major and several minor spots on a two-dimensional polyacrylamide gel. They were transferred on to nitrocellulose sheets and treated with glycosidases (neuraminidase, endo-beta-N-acetyl glucosaminidase H or F, or peptide N-glycosidase F) and treated with peroxidase-coupled lectins (concanavalin A, Ricinus communis agglutinin or wheat-germ agglutinin). From the results, the most probable oligosaccharide types were proposed to be as follows: the four major spots contained components which had high-mannose type or hybrid-type oligosaccharides, such as those susceptible to endo-beta-N-acetylglucosaminidase H. In addition, spot 1 contained a complex-type biantennary oligosaccharide without sialic acid and spot 3 contained a tri- or tetra-antennary complex-type oligosaccharide with sialic acid. The component corresponding to spot 2 had a hybrid-type oligosaccharide chain with a 'bisecting' acetylglucosamine, linked 1-4 to the beta-mannose residue of the trimannosyl core, and the component corresponding to spot 4 had a high-mannose-type oligosaccharide chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号