首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   12篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1990年   3篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
D J Kihm  G J Leyer  G H An    E A Johnson 《Applied microbiology》1994,60(10):3854-3861
Listeria monocytogenes was highly resistant to hen egg white lysozyme in whole milk but was sensitive in media and in phosphate buffer. Methods to sensitize the pathogen to lysozyme in milk were investigated. Treatment of whole milk by cation exchange to remove minerals, particularly Ca2+ and Mg2+, slightly promoted inactivation of L. monocytogenes by lysozyme at 4 degrees C over a period of 6 days. Heat treatment (62.5 degrees C for 15 s) strongly sensitized L. monocytogenes to lysozyme in demineralized milk and in MES [2-(N-morpholino)ethanesulfonic acid] buffer. Addition of Ca2+ or Mg2+ to the demineralized milk restored resistance to lysozyme. Cells were more rapidly heat inactivated at 55 degrees C in demineralized milk containing lysozyme, and addition of Ca2+ to the demineralized milk restored the resistance to heat. The results indicate that minerals or mineral-associated components protect L. monocytogenes from inactivation by lysozyme and heat in milk, probably by increasing cell surface stability. The heat treatment of foods containing added lysozyme can probably play a significant role in producing microbiologically safe foods.  相似文献   
2.
Sporulation of Clostridium botulinum 113B in a complex medium supplemented with certain transition metals (Fe, Mn, Cu, or Zn) at 0.01 to 1.0 mM gave spores that were increased two to sevenfold in their contents of the added metals. The contents of calcium, magnesium, and other metals in the purified spores were relatively unchanged. Inclusion of sodium citrate (3 g/liter) in the medium enhanced metal accumulation and gave consistency in the transition metal contents of independent spore crops. In citrate-supplemented media, C. botulinum formed spores with very high contents of Zn (approximately 1% of the dry weight). Spores containing an increased content of Fe (0.1 to 0.2%) were more susceptible to thermal killing than were native spores or spores containing increased Zn or Mn. The spores formed with added Fe or Cu also appeared less able to repair heat-induced injuries than the spores with added Mn or Zn. Fe-increased spores appeared to germinate and outgrow at a higher frequency than did native and Mn-increased spores. This study shows that C. botulinum spores can be sensitized to increased thermal destruction by incorporation of Fe in the spores.  相似文献   
3.
4.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.  相似文献   
5.
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02 µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.  相似文献   
6.
Aquaporin-1 (AQP1) channels contribute to osmotically induced water transport in several organs including the kidney and serosal membranes such as the peritoneum and the pleura. In addition, AQP1 channels have been shown to conduct cationic currents upon stimulation by cyclic nucleotides. To date, the short term regulation of AQP1 function by other major intracellular signaling pathways has not been studied. In the present study, we therefore investigated the regulation of AQP1 by protein kinase C. AQP1 wild type channels were expressed in Xenopus oocytes. Water permeability was assessed by hypotonic challenges. Activation of protein kinase C (PKC) by 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced a marked increase of AQP1-dependent water permeability. This regulation was abolished in mutated AQP1 channels lacking both consensus PKC phosphorylation sites Thr(157) and Thr(239) (termed AQP1 DeltaPKC). AQP1 cationic currents measured with double-electrode voltage clamp were markedly increased after pharmacological activation of PKC by either OAG or phorbol 12-myristate 13-acetate. Deletion of either Thr(157) or Thr(239) caused a marked attenuation of PKC-dependent current increases, and deletion of both phosphorylation sites in AQP1 DeltaPKC channels abolished the effect. In vitro phosphorylation studies with synthesized peptides corresponding to amino acids 154-168 and 236-250 revealed that both Thr(157) and Thr(239) are phosphorylated by PKC. Upon stimulation by cyclic nucleotides, AQP1 wild type currents exhibited a strong activation. This regulation was not affected after deletion of PKC phosphorylation sites in AQP1 DeltaPKC channels. In conclusion, this is the first study to show that PKC positively regulates both water permeability and ionic conductance of AQP1 channels. This new pathway of AQP1 regulation is independent of the previously described cyclic nucleotide pathway and may contribute to the PKC stimulation of AQP1-modulated processes such as endothelial permeability, angiogenesis, and urine concentration.  相似文献   
7.
A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment.  相似文献   
8.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   
9.
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of systemic sclerosis (SSc). Vascular alterations and reduced capillary density decrease blood flow and impair tissue oxygenation in SSc. Oxygen supply is further reduced by accumulation of extracellular matrix (ECM), which increases diffusion distances from blood vessels to cells. Therefore, severe hypoxia is a characteristic feature of SSc and might contribute directly to the progression of the disease. Hypoxia stimulates the production of ECM proteins by SSc fibroblasts in a transforming growth factor-β-dependent manner. The induction of ECM proteins by hypoxia is mediated via hypoxia-inducible factor-1α-dependent and -independent pathways. Hypoxia may also aggravate vascular disease in SSc by perturbing vascular endothelial growth factor (VEGF) receptor signalling. Hypoxia is a potent inducer of VEGF and may cause chronic VEGF over-expression in SSc. Uncontrolled over-expression of VEGF has been shown to have deleterious effects on angiogenesis because it leads to the formation of chaotic vessels with decreased blood flow. Altogether, hypoxia might play a central role in pathogenesis of SSc by augmenting vascular disease and tissue fibrosis.  相似文献   
10.
Intracellular vesicles, comprised of protein clusters, were individually tracked inside human brain cancer cells and characterized to simultaneously determine the average vesicle size and effective cytoplasmic viscosity. The cells were transfected with a TGF‐β superfamily gene, non‐steroidal anti‐inflammatory drug‐Activated Gene‐1 (NAG‐1) tagged with green fluorescent proteins (GFPs). Using total internal reflection fluorescent microscopy (TIRFM) the individual movements of the vesicles were categorized into either Brownian, caged, or directional type motion. In the near‐field region confined by the evanescent wave field of TIRFM, the hindrance of these vesicles was created by interactions with the glass coverslip and/or sub‐cellular structures. Measured particle motions were compared with theoretical predictions of hindered motion to estimate the unknown size and viscosity parameters using a nonlinear regression technique. For the tested human brain cancer cells, the average vesicle size and effective intracellular fluid viscosity were calculated to be 496 nm and 0.068 Pa s, respectively. This finding suggests that most of the hindrance experienced by vesicles can be due to non‐hydrodynamic interactions with microtubules and other intracellular structures. It should be also noted that this method provides a way to examine changes in vesicle size due to outside stimulus such as drug interaction, cytotoxicity, etc., unlike standard measurement techniques which require fixing the cells themselves. Biotechnol. Bioeng. 2011;108: 2504–2508. © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号