首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有11条查询结果,搜索用时 875 毫秒
1.
Two parameters of Ca2+ dynamics in brain preparations (45Ca-uptake to slices and [3H]nitrendipine binding to membrane fractions) were measured in naive and chronic morphine-administered rats. While morphine did not have any effect on 45Ca-uptake to striatal slices in normal Krebs-Ringer solution, it inhibited K+-stimulated 45Ca-uptake to slices. Furthermore, the effect of morphine was antagonized by naloxone. Inhibition of K+-stimulated 45Ca-uptake to striatal slices by morphine was not observed in preparations obtained from chronic morphine-administered rats (6 mg/kg/b.i.d./7 days). In membrane fractions, [3H]nitrendipine binding increased by 34% in striatum following chronic morphine treatment, whereas no change was observed in the cortex and hippocampus. The results will be discussed in relation to the phenomena underlying chronic morphine administration.  相似文献   
2.
The products of several Bacillus strains were investigated on rabbit serum calcium decreasing, oxytocic and toad heart function promoting activities. These products were obtained from the clear supernatant fluid of the culture medium after the cells were removed by centrifugation.

For the production of rabbit serum calcium decreasing substance, Bacillus subtilis K and Bacillus natto No. 8 were found to be usefull, Bacillus megaterium KM, Bacillus cereus var. mycoides and Bacillus subtilis K produced oxytocic principle. Bacillus subtilis K, Bacillus brevis and Bacillus megaterium KM also produced toad heart function promoting factor.

A procedure was developed to obtain the electrophoretically homogenous rabbit serum calcium decreasing substance from culture filtrate of Bacillus subtilis K. The crude substance was obtained as isoelectric precipitate by adjusting the culture filtrate to pH 3.0. The crude substance was purified by gel filtration on a Sephadex G-75 column, isoelectric fractionation and chromatography on DEAE-cellulose column. The purified preparation was shown to be homogenous by Tiselius electrophoresis but was separated into two bands by polyacrylamide electrophoresis. The chemical analysis of this biologically active substance indicated this substance to be a lipoprotein. The substance decreased rabbit serum calcium level about 12% at 6~8hr after intravenous injection (dose; 0.5 mg/kg body weight).  相似文献   
3.
Nucleobindin-2 is a 420 amino acid EF-hand Ca2+ binding protein that can be further processed to generate an 82 amino terminal peptide termed Nesfatin-1. To examine the function of secreted Nucleobindin-2 in adipocyte differentiation, cultured 3T3-L1 cells were incubated with either 0 or 100 nM of GST, GST-Nucleobindin-2, prior to and during the initiation of adipocyte differentiation. Nucleobindin-2 treatment decreased neutral lipid accumulation (Oil-Red O staining) and expression of several marker genes for adipocyte differentiation (PPARγ, aP2, and adipsin). When Nucleobindin- 2 was constitutively secreted into cultured medium, cAMP content and insulin stimulated CREB phosphorylation were significantly reduced. On the other hand, intracellularly overexpressed Nucleobindin-2 failed to affect cAMP content and CREB phosphorylation. Taken together, these data indicate that secreted Nucleobindin-2 is a suppressor of adipocyte differentiation through inhibition of cAMP production and insulin signal.  相似文献   
4.
Previously we identified an unusual potential dual Akt/protein kinase B consensus phosphorylation motif in the protein Synip (RxKxRS(97)xS(99)) with serine 99 as a unique Akt2, but not Akt1 or for Akt3, substrate phosphorylation site. Although we have previously reported that serine 99 to phenylalanine (S99F-Synip) resulted in a constitutive inhibition of insulin-stimulated Glut4 translocation, a recent report indicated that Synip serine 99 to alanine mutant (S99A-Synip) failed to inhibit insulin-stimulated Glut4 translocation [H. Sano, S. Kane, E. Sano, G.E. Lienhard, Synip phosphorylation does not regulate insulin-stimulated GLUT4 translocation, Biochem. Biophys. Res. Commun. 332 (2005) 880-884]. To address this apparent discrepancy, we have now examined the S99A-Synip mutant and find that this mutant behaves essentially identical to S99F-Synip in that overexpression inhibits insulin-stimulated Glut4 translocation and is incapable of undergoing insulin-stimulated Syntaxin4 dissociation. These data are consistent with Synip serine 99 phosphorylation required for insulin-stimulated Glut4 translocation.  相似文献   
5.
The mechanism of TNF-α-induced insulin resistance has remained unresolved with evidence for down-regulation of insulin effector targets effects or blockade of proximal as well as distal insulin signaling events depending upon the dose, time, and cell type examined. To address this issue we examined the acute actions of TNF-α in differentiated 3T3L1 adipocytes. Acute (5-15 min) treatment with 20 ng/ml (~0.8 nm) TNF-α had no significant effect on IRS1-associated phosphatidylinositol 3-kinase. In contrast, TNF-α increased insulin-stimulated cyclin-dependent kinase-5 (CDK5) phosphorylation on tyrosine residue 15 through an Erk-dependent pathway and up-regulated the expression of the CDK5 regulator protein p35. In parallel, TNF-α stimulation also resulted in the phosphorylation and GTP loading of the Rho family GTP-binding protein, TC10α. TNF-α enhanced the depolymerization of cortical F-actin and inhibited insulin-stimulated glucose transporter-4 (GLUT4) translocation. Treatment with the MEK inhibitor, PD98059, blocked the TNF-α-induced increase in CDK5 phosphorylation and the depolymerization of cortical F-actin. Conversely, siRNA-mediated knockdown of CDK5 or treatment with the MEK inhibitor restored the impaired insulin-stimulated GLUT4 translocation induced by TNF-α. Furthermore, siRNA-mediated knockdown of p44/42 Erk also rescued the TNF-α inhibition of insulin-stimulated GLUT4 translocation. Together, these data demonstrate that TNF-α-mediated insulin resistance of glucose uptake can occur through a MEK/Erk-dependent activation of CDK5.  相似文献   
6.
Insulin stimulation results in the activation of cyclin-dependent kinase-5 (CDK5) in lipid raft domains via a Fyn-dependent phosphorylation on tyrosine residue 15. In turn, activated CDK5 phosphorylates the Rho family GTP-binding protein TC10alpha on threonine 197 that is sensitive to the CDK5 inhibitor olomoucine and blocked by small interfering RNA-mediated knockdown of CDK5. The phosphorylation deficient mutant T197A-TC10alpha was not phosphorylated and excluded from the lipid raft domain, whereas the phosphorylation mimetic mutant (T197D-TC10alpha) was lipid raft localized. Insulin resulted in the GTP loading of T197D-TC10alpha but not T197A-TC10alpha and in parallel, T197D-TC10alpha but not T197A-TC10alpha depolymerized cortical actin and inhibited insulin-stimulated GLUT4 translocation. These data demonstrate that CDK5-dependent phosphorylation maintains TC10alpha in lipid raft compartments thereby disrupting cortical actin, whereas subsequent dephosphorylation of TC10alpha through inactivation of CDK5 allows for the re-assembly of F-actin. Because cortical actin reorganization is required for insulin-stimulated GLUT4 translocation, these data are consistent with a CDK5-dependent TC10alpha cycling between lipid raft and non-lipid raft compartments.  相似文献   
7.
We have identified an unusual potential dual Akt/protein kinase B consensus phosphorylation motif in the protein Synip (RxKxRS(97)xS(99)). Surprisingly, serine 97 is not appreciably phosphorylated, whereas serine 99 is only a specific substrate for Akt2 but not Akt1 or Akt3. Although wild-type Synip (WT-Synip) undergoes an insulin-stimulated dissociation from Syntaxin4, the Synip serine 99 to phenylalanine mutant (S99F-Synip) is resistant to Akt2 phosphorylation and fails to display insulin-stimulated Syntaxin4 dissociation. Furthermore, overexpression of WT-Synip in 3T3L1 adipocytes had no effect on insulin-stimulated recruitment of glucose transporter 4 (GLUT4) to the plasma membrane, whereas overexpression of S99F-Synip functioned in a dominant-interfering manner by preventing insulin-stimulated GLUT4 recruitment and plasma membrane fusion. These data demonstrate that insulin activation of Akt2 specifically regulates the docking/fusion step of GLUT4-containing vesicles at the plasma membrane through the regulation of Synip phosphorylation and Synip-Syntaxin4 interaction.  相似文献   
8.
An antagonistic effect of calcium on the action of morphine was studied in rat hippocampal slices. The effect of repeated administration of morphine on gamma-aminobutyric acid (GABA) release and binding of [3H]nitrendipine, a calcium antagonist, was also examined. (1) In rat brain hippocampal slices, morphine enlarged the amplitude of the field potentials evoked in pyramidal neurons, disinhibiting them through basket cells. When the calcium concentration was elevated, potentiation of the field potentials by morphine was reduced. Decrease of the calcium concentration, on the other hand, enhanced the potentiating effect of morphine. Following repeated administration of morphine, its enhancing effect on the field potentials in slices was not observed. (2) In hippocampal membrane fractions obtained from rats repeatedly treated with morphine, enhancement of [3H]nitrendipine binding was observed. (3) In hippocampal slice preparations from rats receiving morphine repeatedly, K+ (45 mM)-stimulated [3H]GABA efflux was enhanced. The above results indicate that morphine antagonizes calcium, thereby reducing the release of transmitters. Furthermore, increase in calcium channels following repeated treatment of rats with morphine may explain the mechanism underlying development of tolerance.  相似文献   
9.
The present studies have tested the hypothesis that adrenalectomy could modify the phenotypic expression of genetic obesity by examining the effects of adrenalectomy on the function of the gonadal system in lean and ob/ob mice. Corticosterone concentrations were undetectable in the adrenalectomized animals. Adrenalectomy significantly slowed the weight gain of obese mice in comparison to sham-adrenalectomized controls. Gonadectomy had no independent effect on weight gain. The testes, prostate, and seminal vesicles in the ob/ob mice were significantly smaller than in the lean animals. Castration lowered the weights of the prostate and seminal vesicles in the lean mice to weights close to those observed in the castrated ob/ob mice. Castration significantly increased the concentrations of LH and FSH in both ob/ob and lean mice, but the absolute concentrations were higher in the lean mice in both conditions. Adrenalectomy per se had no effect on the concentration of LH, FSH, or testosterone or on the weights of the prostate or seminal vesicles. These data indicate that adrenalectomy has no effect on the physiologic control of the reproductive system in genetically obese mice, and are consistent with the hypothesis that the defect in the ob/ob mouse is a modulator of steroid action which over expresses glucocorticoid effects and under expresses gonadal steroid effects.  相似文献   
10.
Although syntaxin 1 is generally thought to function as the primary target-N-ethylmaleimide-sensitive factor attachment protein receptor required for pancreatic beta cell insulin secretion, we have observed that overexpression of a dominant-interfering syntaxin 4 mutant (syntaxin 4/DeltaTM) attenuated glucose-stimulated insulin secretion in betaHC-9 cells. Furthermore, these cells express the selective syntaxin 4-binding protein Synip (syntaxin 4 interacting protein), and Synip was specifically co-immunoprecipitated with syntaxin 4 but not syntaxin 1. Overexpression of the full-length Synip protein (Synip/wild type) inhibited VAMP2 association with syntaxin 4 and decreased glucose-stimulated insulin secretion. This did not occur with a Synip mutant (Synip/ DeltaEF) that was incapable of binding syntaxin 4. Consistent with a functional role of syntaxin 4 in this process, expression of syntaxin 4/DeltaTM also inhibited glucose-stimulated insulin secretion. Furthermore, analysis of first and second phase insulin secretion demonstrated that syntaxin 4/DeltaTM mainly suppressed the second phase of insulin secretion. In contrast, overexpression of Synip resulted in an inhibition of both the first and second phase of glucose-stimulated insulin secretion. These data demonstrate that syntaxin 4 plays a functional role on insulin release and granule fusion in beta cells and that this process is regulated by the syntaxin 4-specific binding protein Synip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号