首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   14篇
  155篇
  2019年   1篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   10篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1929年   2篇
  1928年   2篇
  1915年   1篇
  1911年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
1.

Background

AHSP is an erythroid molecular chaperone of the α-hemoglobin chains (α-Hb). Upon AHSP binding, native ferric α-Hb undergoes an unprecedented structural rearrangement at the heme site giving rise to a 6th coordination bond with His(E7).

Methods

Recombinant AHSP, WT α-Hb:AHSP and α-HbHE7Q:AHSP complexes were expressed in Escherichia coli. Thermal denaturation curves were measured by circular dichroism for the isolated α-Hb and bound to AHSP. Kinetics of ligand binding and redox reactions of α-Hb bound to AHSP as well as α-Hb release from the α-Hb:AHSP complex were measured by time-resolved absorption spectroscopy.

Results

AHSP binding to α-Hb is kinetically controlled to prevail over direct binding with β-chains and is also thermodynamically controlled by the α-Hb redox state and not the liganded state of the ferrous α-Hb. The dramatic instability of isolated ferric α-Hb is greatly decreased upon AHSP binding. Removing the bis-histidyl hexacoordination in α-HbH58(E7)Q:AHSP complex reduces the stabilizing effect of AHSP binding. Once the ferric α-Hb is bound to AHSP, the globin can be more easily reduced by several chemical and enzymatic systems compared to α-Hb within the Hb-tetramer.

Conclusion

α-Hb reduction could trigger its release from AHSP toward its final Hb β-chain partner producing functional ferrous Hb-tetramers. This work indicates a preferred kinetic pathway for Hb-synthesis.

General significance

The cellular redox balance in Hb-synthesis should be considered as important as the relative proportional synthesis of both Hb-subunits and their heme cofactor. The in vivo role of AHSP is discussed in the context of the molecular disorders observed in thalassemia.  相似文献   
2.
In order to decrease significantly the oxygen affinity of human hemoglobin, we have associated the mutation betaF41Y with another point mutation also known to decrease the oxygen affinity of Hb. We have synthesized a recombinant Hb (rHb) with two mutations in the beta chains: rHb betaF41Y,K66T. In the absence of 2, 3-diphosphoglycerate, additive effects of the mutations are evident, since the doubly mutated Hb exhibits a larger decrease in oxygen affinity than for the individual single mutations. In the presence of 2,3-diphosphoglycerate, the second mutation did not significantly increase the P(50) value relative to the single mutations. However, the kinetics of CO binding still indicate combined effects on the allosteric equilibrium, as evidenced by more of the slow bimolecular phase characteristic of binding to the deoxy conformation. Dimer-tetramer equilibrium studies indicate an increase in stability of the mutants relative to rHb A; the double mutant rHb betaF41Y, K66T at pH 7.5 showed a K(4,2) value of 0.26 microM. Despite the lower oxygen affinity, the single mutant betaF41Y and double mutant betaF41Y,K66T show only a moderate increase of 20% in the autoxidation rate. These mutations are thus of interest in developing a Hb-based blood substitute.  相似文献   
3.
4.
5.
    
Neuroglobin (Ngb) and cytoglobin (Cygb), recent additions to the globin family, display a hexa-coordinated (bis-histidyl) heme in the absence of external ligands. Although these proteins have the classical globin fold they reveal a very high thermal stability with a melting temperature (Tm) of 100 degrees C for Ngb and 95 degrees C for Cygb. Moreover, flash photolysis experiments at high temperatures reveal that Ngb remains functional at 90 degrees C. Human Ngb may have a disulfide bond in the CD loop region; reduction of the disulfide bond increases the affinity of the iron atom for the distal (E7) histidine, and leads to a 3 degrees C increase in the T(m) for ferrous Ngb. A similar Tm is found for a mutant of human Ngb without cysteines. Apparently, the disulfide bond is not involved directly in protein stability, but may influence the stability indirectly because it modifies the affinity of the distal histidine. Mutation of the distal histidine leads to lower thermal stability, similar to that for other globins. Only globins with a high affinity of the distal histidine show the very high thermal stability, indicating that stable hexa-coordination is necessary for the enhanced thermal stability; the CD loop which contains the cysteines appears as a critical region in the neuroglobin thermal stability, because it may influence the affinity of the distal histidine.  相似文献   
6.
    
Lung carbon monoxide (CO) transfer and pulmonary capillary blood volume (Vc) at high altitudes have been reported as being higher in native highlanders compared to acclimatised lowlanders but large discrepancies appears between the studies. This finding raises the question of whether hypoxia induces pulmonary angiogenesis.Eighteen highlanders living in Bolivia and 16 European lowlander volunteers were studied. The latter were studied both at sea level and after acclimatisation to high altitude. Membrane conductance (DmCO) and Vc, corrected for the haemoglobin concentration (Vccor), were calculated using the NO/CO transfer technique. Pulmonary arterial pressure and left atrial pressures were estimated using echocardiography.Highlanders exhibited significantly higher NO and CO transfer than acclimatised lowlanders, with Vccor/VA and DmCO/VA being 49 and 17% greater (VA: alveolar volume) in highlanders, respectively. In acclimatised lowlanders, DmCO and DmCO/VA values were lower at high altitudes than at sea level. Echocardiographic estimates of cardiac output and pulmonary arterial pressure were significantly elevated at high altitudes as compared to sea level.The decrease in DmCO in lowlanders might be due to altered gas transport in the airways due to the low density of air at high altitudes. The disproportionate increase in Vc in Andeans compared to the change in DmCO suggests that the recruitment of capillaries is associated with a thickening of the blood capillary sheet. Since there was no correlation between the increase in Vc and the slight alterations in haemodynamics, this data suggests that chronic hypoxia might stimulate pulmonary angiogenesis in Andeans who live at high altitudes.  相似文献   
7.
John A. Kiger  Jr.  Eric Golanty 《Genetics》1979,91(3):521-535
Two cyclic AMP phosphodiesterase enzymes (E.C.3.1.4.17) are present in homogenates of adult Drosophila melanogaster. The two enzymes differ from one another in heat stability, affinity for Mg++, Ca++ activation and molecular weight. They do not differ markedly in their affinities for cyclic AMP, and both exhibit anomalous Michaelis-Menten kinetics. The more heat-labile enzyme is controlled in a dosage-dependent manner by chromomere 3D4 of the X chromosome and is absent in flies that are deficient for chromomere 3D4. Chromomere 3D4 is also necessary for the maintenance of normal cAMP levels, for male fertility, and for normal female fertility and oogenesis. The structural gene(s) for the more heat-stable enzyme is located outside of chromomeres 3C12-3D4. Whether 3D4 contains a structural gene, or a regulatory gene necessary for the presence of the labile enzyme, remains to be determined.  相似文献   
8.
    
A survey is presented of picosecond kinetics of heme-residue bond formation after photolysis of histidine, methionine, or cysteine, in a broad range of ferrous six-coordinate heme proteins. These include human neuroglobin, a bacterial heme-binding superoxide dismutase (SOD), plant cytochrome b 559, the insect nuclear receptor E75, horse heart cytochrome c and the heme domain of the bacterial sensor protein Dos. We demonstrate that the fastest and dominant phase of binding of amino acid residues to domed heme invariably takes place with a time constant in the narrow range of 5-7 ps. Remarkably, this is also the case in the heme-binding SOD, where the heme is solvent-exposed. We reason that this fast phase corresponds to barrierless formation of the heme-residue bond from a configuration close to the bound state. Only in proteins where functional ligand exchange occurs, additional slower rebinding takes place on the time scale of tens of picoseconds after residue dissociation. We propose that the presence of these slower phases reflects flexibility in the heme environment that allows external ligands (O2, CO, NO, . . .) to functionally replace the internal residue after thermal dissociation of the heme-residue bond.  相似文献   
9.
Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation.  相似文献   
10.
Mouse and human neuroglobins, as well as the hemoglobins from Drosophila melanogaster and Arabidopsis thaliana, were recombinantly expressed in Escherichia coli, and their ligand-binding properties were studied versus temperature. These globins have a common feature of being hexacoordinated (via the distal histidine) under deoxy conditions, as evidenced by a large amplitude for the alpha absorption band at 560 nm and the Soret band at 426 nm. The transition from the hexacoordinated form to the CO bound species is slow, as expected for a replacement reaction Fe-His --> Fe --> FeCO. The intrinsic binding rates would indicate a high oxygen affinity for the pentacoordinated form, due to rapid association and slow (100 ms-1 s) dissociation. However, the competing protein ligand results in a much lower affinity, on the order of magnitude of 1 torr. In addition to decreasing the affinity for external ligand, the competitive internal ligand leads to a weaker observed temperature dependence of the ligand affinity, since the difference in equilibrium energy for the two ligands is much lower than that of ligand binding to pentacoordinated hemoglobin. This effect could be of biological relevance for certain organisms, since it could provide a globin with an oxygen affinity that is nearly independent of temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号