首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2013年   1篇
  2008年   2篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
  1990年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Human apolipoprotein A-I gene (apoA-I) inserted into a plasmid expression vector was transferred in vivo into C57Bl/6 mice using hydrodynamic injections into the tail vein. Two types of plasmid expression vectors were used: (1) pCMVcapoAI which contained cDNA of apoA-I driven by the human cytomegalovirus (CMV) early gene promoter and (2) pAlg, which contained a genomic locus of intron-containing apoA-I driven by its own extended 5-regulatory region (APOAI). Hydrodynamic intravenous injections of both expression vectors led to the appearance of human apoA-I mRNA in the liver and human ApoA-I protein in the serum of injected mice. The dynamics of human ApoA-I content in the sera of mice injected with pCMVcapoAI and pAlg were different. When pCMVcapoAI was used, the concentration of human ApoA-I in mouse serum was maximal one day after injection and decreased to zero within the next two weeks. In the case of pAlg, the content of human ApoA-I in serum was maximal (up to 20 g/ml) on days 5–7 after injection and then gradually decreased for several months (six months after injection, for example, it decreased to 25% of the maximal value). Experiments on saved pAlg plasmid isolated from the nuclei of hepatocytes 50 days after injection showed that the plasmid was retained for a long time in the form of an episome. A significant content of human ApoA-I in serum and its long-term persistence after injecting mice with pAlg may be accounted for by the properties of APOAI and/or the exon–intron structure of the apoA-I gene. Injecting mice with different variants of APOAI coupled with the luciferase gene did not lead to long-term expression of luciferase in the liver. It is concluded that the presence of introns in the apoA-I gene is required for its efficient and long-term expression after transfer to mice by means of hydrodynamic injections.  相似文献   
2.
3.
One of the crucial problems of developmental biology is the study of mechanisms of regulation of gene expression in early embryogenesis. Here we studied dynamics of mosaic appearance of a marker fluorescent protein in in vitro developing mice embryo derived from zygotes after microinjections to male pronuclei of cloned DNA fragment carrying EGFP under control of different promoters. Main attention was paid to initial stages of development, when structural rearrangements and reprogramming of both parental genomes, activation of zygotic genes, and control of development by embryo genome take place.  相似文献   
4.
We present the data on the in vitro development of mouse embryos after injecting pronuclei with cloned DNA fragments with an enhanced green fluorescent protein (EGFP) gene under the control of different regulatory elements (promoters, enhancers, stop signals, etc). It was found that the microinjection procedure itself inhibits development independent of the genetic constructs applied. The development of transgenic embryos may be blocked at different stages of cleavage and morula or blastocyte stages. Most transgenic embryos proved to be mosaics. Transgenic cells are very frequently found in trophectoderm; i.e. they are not a part of the inner cell mass, which is a progenitor for the development of embryo tissues.  相似文献   
5.
With the goal of developing non-viral techniques for exogenous gene delivery into mammalian cells, we have studied receptor-mediated gene transfer using complexes of plasmid DNA and galactosylated poly-L-lysine, poly(L-Lys)Gal. To evaluate the optimal parameters for efficient gene transfer into human hepatoma HepG2 cells by the DNA–poly(L-Lys)Gal complexes, the bacterial reporter genes lacZ and cat were used. Examination of the reporter gene expression level showed that the efficiency of DNA delivery into the cells depends on the structure of DNA–poly(L-Lys)Gal complexes formed at various ionic strength values. The efficiency of DNA transfer into the cells also depends on DNA/poly(L-Lys)Gal molar ratio in the complexes. Plasmid vector carrying human apolipoprotein A-I (apoA-I) gene was injected as its complex with poly(L-Lys)Gal into rat tail vein. Some level of ApoA-I was detected in the serum of the injected rats. Also, the human apoA-I-containing plasmid was found to be captured specifically by the rat liver cells and transported into the cell nuclei, where it can persist as an episome-like structure for at least a week. After repeated injections of DNA–poly(L-Lys)Gal complexes, the level of human ApoA-I in rat serum increases, probably, due to accumulation of functional human apoA-I gene in the liver cell nuclei. The data seem to be useful for the development of non-viral approaches to gene therapy of cardiovascular diseases.  相似文献   
6.
Gross alterations in cell energy metabolism underlie manifestations of hereditary OXPHOS (oxidative phosphorylation) diseases, many of which depend on proportion of mutant mitochondrial DNA (mtDNA) in tissues. An animal model of OXPHOS disease with maternal inheritance of mitochondrial heteroplasmy might help understanding the peculiarities of abnormal mtDNA distribution and its effect on pre- and postnatal development. Previously we obtained mice that carry human mtDNA in some tissues. It co-existed with murine mtDNA (heteroplasmy) and was transmitted maternally to the progeny of animals developed from zygotes injected with human mitochondria. To analyze the probability of obtaining heteroplasmic mice we increased the number of experiments with early embryos and obtained more specimens from F1. About 33% of zygotes injected with human mtDNA developed into post-implantation embryos (7th-13th days). Lower amount of such developed into neonate mice (ca. 21%). Among post-implantation embryos and in generations F0 and F1 percentages of human mtDNA-carriers were ca. 14-16%. Such percentages are sufficient for modeling maternally inherited heteroplasmy in small animal groups. More data are needed to understand the regularities of anomalous mtDNA distribution among cells and tissues and whether heart and muscles frequently carrying human mtDNA in our experiments are particularly susceptible to heteroplasmy.  相似文献   
7.
8.
Previously we obtained heteroplasmic mice carrying murine and human mitochondrial DNA (mtDNA). Even the fourth generation of such mice had human mtDNA in their organs, hence, they were used to study the possibility of paternal mtDNA transmission. A lineage was obtained in which human mtDNA was transmitted by males to the progeny in four successive generations. This is the first observation of such a continuous paternal transmission of mtDNA. Persistence of paternal mtDNA in several successive generations of animals suggests that mechanisms aimed at elimination of paternally inherited mtDNA species are not as strict as has been postulated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号