首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7684篇
  免费   589篇
  国内免费   6篇
  2023年   27篇
  2022年   42篇
  2021年   174篇
  2020年   126篇
  2019年   144篇
  2018年   215篇
  2017年   220篇
  2016年   347篇
  2015年   484篇
  2014年   532篇
  2013年   615篇
  2012年   722篇
  2011年   725篇
  2010年   458篇
  2009年   389篇
  2008年   533篇
  2007年   473篇
  2006年   413篇
  2005年   370篇
  2004年   297篇
  2003年   266篇
  2002年   212篇
  2001年   70篇
  2000年   54篇
  1999年   57篇
  1998年   46篇
  1997年   30篇
  1996年   19篇
  1995年   26篇
  1994年   11篇
  1993年   15篇
  1992年   16篇
  1991年   15篇
  1990年   6篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1982年   4篇
  1980年   5篇
  1979年   7篇
  1975年   4篇
  1974年   3篇
  1968年   3篇
  1967年   3篇
  1966年   4篇
  1965年   3篇
  1936年   3篇
排序方式: 共有8279条查询结果,搜索用时 218 毫秒
1.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
2.
3.
4.
In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection. [BMB Reports 2015; 48(12): 643-644]  相似文献   
5.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
6.
7.
Microtubule-organizing centers recruit α- and β-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A–E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into “centriolar rosettes”. These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.  相似文献   
8.
Mice with the dysmyelinating mutation shiverer were studied by measuring the activity of two protein methylases and myelin marker enzymes in the brain. It was observed thatS-adenosylmethionine: protein-lysineN-methyltransferase (protein methylase III, EC. 2.1.1.43) activity is significantly reduced in phenotypically affected homozygous shiverer (shi/shi) mutant mouse brain compared to the unaffected heterozygous littermate brain. This reduction in enzyme activity is manifested mainly by reduced formation of trimethyllysine during the in vitro methylation of histone. In contrast, myelin marker enzymes such as 2,3-cyclic nucleotide 3-phosphohydrolase and 5-nucleotidase as well asS-adenosyl-methionine: protein-carboxylO-methyltransferase (protein methylase II, EC. 2.1.1.24) activities were not significantly affected in these strains of mice.  相似文献   
9.
Summary In enzymatic synthesis of cephalexin (CEX) from 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and D--phenylglycine methyl ester (PGM) using an acylase fromXanthomonas citri, it was found that the synthetic activity and conversion yield were enhanced markedly by depressing the water activity (a w ) of reaction system. This enhancement was probably resulted from the change of thermodynamic equilibrium and maximized at a range ofa w from 0.96 to 0.97.  相似文献   
10.
A collaborative study from two laboratories has been undertaken to re-evaluate the human follitropin -subunit sequence (hFSH), since areas of uncertainty remain in the wake of two earlier reports. The first report was by Shome and Parlow (1974). The second, by Saxena and Rathnam (1976), proposed revisions for sequence not definitively placed in the first study, as well as some differences in other placements. We have re-examined the sequence of the hFSH with more recent methodology. This has led to revision of certain areas of the sequence and resolution of differences between the two earlier proposals. Specifically, an-Ile-Ser- is established at 21–22, Asp at 41, Arg at 44, Lys at 46, and Glu at 111. These were areas of disagreement in the earlier proposals. A definitive placement of the residues around tryptophan-27 has now been obtained by three laboratories. C-terminal heterogeneity was observed with subunits ending at residue 107, 109, or 111. N-terminal heterogeneity has been observed in all preparations examined to date. A significant population of molecules with a proteolytic nick between residues 38–39 is noted. This is very likely an artifact of the collection and processing. The preparations examined in the present studies showed no evidence of residues 112–118 proposed by Saxena and Rathnam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号