首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  1990年   1篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
A system for express electrophoretic separation of proteins in a thin layer of polyacrylamide gel covalently attached to a glass base has been proposed. A technology of covalent attachment of gel to a glass base has been developed and a small-scale instrument has been constructed which allows to carry out the separation, staining and electrophoregram washing off for 60 min. The quality of the cleaved protein mixtures is not worse than the electrophoregrams obtained using the "Phase System T. M." instrument of "Pharmacia".  相似文献   
2.
Fluorescence characteristics and molecular photophysical parameters of light-harvesting chlorophyll a/b complexes isolated from pea were studied in relation to their aggregation state. The aggregate size was varied by changing the Triton X-100 concentration from 0 to 0.23 mM at a chlorophyll concentration of 2.45 μg/ml. Molecular photophysical parameters were determined with laser fluorimetry. Dispersion of large aggregates into smaller ones drastically decreased the intensity of low-temperature (77 K) fluorescence at 700 nm, reduced the singlet-singlet annihilation rate by more than two orders of magnitude, and prolonged the fluorescence lifetime from 0.16 to 3.2 ns.  相似文献   
3.
Carbonic Anhydrase Activities in Pea Thylakoids   总被引:2,自引:1,他引:1  
Pea thylakoids with high carbonic anhydrase (CA) activity (average rates of 5000 µmol H+ (mg Chl)–1 h–1 at pH 7.0) were prepared. Western blot analysis using antibodies raised against the soluble stromal -CA from spinach clearly showed that this activity is not a result of contamination of the thylakoids with the stromal CA but is derived from a thylakoid membrane-associated CA. Increase of the CA activity after partial membrane disintegration by detergent treatment, freezing or sonication implies the location of the CA in the thylakoid interior. Salt treatment of thylakoids demonstrated that while one part of the initial enzyme activity is easily soluble, the rest of it appears to be tightly associated with the membrane. CA activity being measured as HCO3 dehydration (dehydrase activity) in Photosystem II particles (BBY) was variable and usually low. The highest and most reproducible activities (approximately 2000 µmol H+ (mg Chl)–1 h–1) were observed in the presence of detergents (Triton X-100 or n-octyl--D-glucopyranoside) in low concentrations. The dehydrase CA activity of BBY particles was more sensitive to the lipophilic CA inhibitor, ethoxyzolamide, than to the hydrophilic CA inhibitor, acetazolamide. CA activity was detected in PS II core complexes with average rate of 13,000 µmol H+ (mg Chl)–1 h–1 which was comparable to CA activity in BBY particles normalized on a PS II reaction center basis.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
4.
Carbonic anhydrase activities of pea thylakoids as well as thylakoid fragments enriched either in Photosystem 1 (PS1-membranes) or Photosystem 2 (PS2-membranes) were studied. The activity of PS1-membranes if calculated on chlorophyll basis was much higher than the activity of PS2-membranes. Acetazolamide, a non-permeable inhibitor of carbonic anhydrases, increased carbonic anhydrase activity of PS2-membranes at concentrations lower than 10−6 M and suppressed this activity only at higher concentrations. A lipophilic inhibitor of carbonic anhydrases, ethoxyzolamide, effectively suppressed the carbonic anhydrase activity of PS2-membranes (I 50 = 10−9 M). Carbonic anhydrase activity of PS1-membranes was suppressed alike by both inhibitors (I 50 = 10−6 M). In the course of the electrophoresis of PS2-membranes treated with n-dodecyl-β-maltoside “high-molecular-mass” carbonic anhydrase activity was revealed in the region corresponding to core-complex of this photosystem. Besides, carbonic anhydrase activity in the region of low-molecular-mass proteins was discovered in the course of such an electrophoresis of both PS2-and PS1-membranes. These low-molecular-mass carbonic anhydrases eluted from corresponding gels differed in sensitivity to specific carbonic anhydrase inhibitors just the same as PS1-membranes versus PS2-membranes. The results are considered as evidence for the presence in the thylakoid membranes of three carriers of carbonic anhydrase activity. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 5, pp. 651–659.  相似文献   
5.
Primary charge separation dynamics in the reaction center (RC) of purple bacterium Rhodobacter sphaeroides and its P870 heterodimer mutants have been studied using femtosecond time-resolved spectroscopy with 20 and 40fs excitation at 870nm at 293K. Absorbance increase in the 1060-1130nm region that is presumably attributed to P(A)(δ+) cation radical molecule as a part of mixed state with a charge transfer character P*(P(A)(δ+)P(B)(δ-)) was found. This state appears at 120-180fs time delay in the wild type RC and even faster in H(L173)L and H(M202)L heterodimer mutants and precedes electron transfer (ET) to B(A) bacteriochlorophyll with absorption band at 1020nm in WT. The formation of the P(A)(δ+)B(A)(δ-) state is a result of the electron transfer from P*(P(A)(δ+)P(B)(δ-)) to the primary electron acceptor B(A) (still mixed with P*) with the apparent time delay of ~1.1ps. Next step of ET is accompanied by the 3-ps appearance of bacteriopheophytin a(-) (H(A)(-)) band at 960nm. The study of the wave packet formation upon 20-fs illumination has shown that the vibration energy of the wave packet promotes reversible overcoming of an energy barrier between two potential energy surfaces P* and P*(P(A)(δ+)B(A)(δ-)) at ~500fs. For longer excitation pulses (40fs) this promotion is absent and tunneling through an energy barrier takes about 3ps. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   
6.
Kreslavski  V.D.  Balakhnina  T.I.  Khristin  M.S.  Bukhov  N.G. 《Photosynthetica》2001,39(3):363-368
Bean (Phaseolus vulgaris L. cv. Berbukskaya) seedlings were pre-treated with choline compounds, 19 mM 2-ethyltrimethylammonium chloride (Ch) or 1.6 mM 2-chloroethyltrimethylammonium chloride (CCh), during 24 h, then after 6 d the excised primary leaves were exposed to UV-B and high temperature stress. Chlorophyll (Chl) fluorescence, delayed light emission, accumulation of photosynthetic pigments, contents of thiobarbituric acid reactive substances, and activities of the active oxygen detoxifying enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) were examined. Pre-treatment of plants with Ch or CCh enhanced the resistance of photosystem 2 (PS2) photochemistry to UV-B and heat injuries. The higher stress resistance can be explained by the increased activity of the detoxifying enzymes. The increased content of UV-B-absorbing pigments may also contribute to the enhanced resistance of choline-treated plants to UV-B radiation.  相似文献   
7.
Photosynthesis in tissues under periderm of woody stems and shoots of perennial plants occurs in environment that is very different from the internal environment of leaf chloroplasts. These tissues are characterized by high CO2 and low O2 concentrations, more acidic surroundings, besides that only light which have passed through periderm reaches photosynthetic antennas. In contrast to leaves of deciduous plants chlorenchyma tissues of wintering plant organs are exposed to temperature fluctuations during all seasons, that is why the photosynthetic apparatus of woody stems has to be able to adapt to a wide range of environmental temperatures. In order to reveal unique features, which enable photosynthetic apparatus of chlorenchyma cells in woody plant organs to implement biological functions under different light and temperature conditions, we studied photosynthetic tissues of stem cortex in grapevine (Vitis vinifera L.) under normal conditions and after exposure to suboptimal temperatures and high light intensity. Comparative analysis of photosynthetic pigment composition and low-temperature chlorophyll fluorescence emission spectrum of leaves, young shoots and chlorenchyma of lignified shoots revealed relatively high level of chlorophyll b and carotenoids, and high photosystem II (PSII) to photosystem I (PSI) ratio in woody shoots. Analysis of parameters of variable chlorophyll fluorescence revealed high PSII activity in grapevine shoot cortex and demonstrated improved freeze tolerance and higher sensitivity to light of photosynthetic apparatus in grape vine in comparison to leaves. It was shown for the first time that photosynthetic apparatus in chlorenchyma cells of vine undergoes so-called “state-transition”–fast rearrangements leading to redistribution of energy between photosystems. Analysis of fatty acid (FA) compositions of lipids in examined tissues showed that the FA unsaturation index in green tissue of vine is lower than in leaves. A distinct feature of FA compositions of lipids in vine cortex was relatively high level of linoleic acid.  相似文献   
8.
Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll BA at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P+H A ? state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P+B A ? HA and P+BAH A ? states. The data give grounds for assuming that the value of the energy difference between the states P*, P+B A ? HA, and P+BAH A ? at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll BA is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P+B A ? state with respect to P*.  相似文献   
9.
Phycobilisomes (PBS) are the major photosynthetic antenna complexes in cyanobacteria and red algae. In the red microalga Galdieria sulphuraria, action spectra measured separately for photosynthetic activities of photosystem I (PSI) and photosystem II (PSII) demonstrate that PBS fraction attributed to PSI is more sensitive to stress conditions and upon nitrogen starvation disappears from the cell earlier than the fraction of PBS coupled to PSII. Preillumination of the cells by actinic far-red light primarily absorbed by PSI caused an increase in the amplitude of the PBS low-temperature fluorescence emission that was accompanied by the decrease in PBS region of the PSI 77 K fluorescence excitation spectrum. Under the same conditions, fluorescence excitation spectrum of PSII remained unchanged. The amplitude of P700 photooxidation in PBS-absorbed light at physiological temperature was found to match the fluorescence changes observed at 77 K. The far-red light adaptations were reversible within 2-5min. It is suggested that the short-term fluorescence alterations observed in far-red light are triggered by the redox state of P700 and correspond to the temporal detachment of the PBS antenna from the core complexes of PSI. Furthermore, the absence of any change in the 77 K fluorescence excitation cross-section of PSII suggests that light energy transfer from PBS to PSI in G. sulphuraria is direct and does not occur through PSII. Finally, a novel photoprotective role of PBS in red algae is discussed.  相似文献   
10.
The thylakoid membrane containing photosystem II (PSII membranes) from pea and wheat leaves catalyzed the reaction of CO2 hydration with low rate, which increased after their incubation either with Triton X-100, up to Triton/chlorophyll ratio 1:1, or 1 M CaCl2. The presence of the inhibitor of CAs, p-aminomethylbenzensulfonamide (mafenide), at the start line in the course of electrophoresis of PSII membranes solubilized by n-dodecyl-beta-maltoside (DM) decreased the amount of PSII core complex in the gel. The elution of PSII core complex from the column with immobilized mafenide occurred only either by mafenide or another inhibitor of CAs, ethoxyzolamide. The above results led to a conclusion that membrane-bound CA activity associated with PSII is situated in the core complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号