首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   12篇
  国内免费   1篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   11篇
  1991年   7篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   5篇
  1986年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   11篇
  1978年   3篇
  1977年   1篇
  1976年   5篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   16篇
  1971年   2篇
  1968年   2篇
  1967年   6篇
  1966年   3篇
  1965年   4篇
  1963年   1篇
排序方式: 共有174条查询结果,搜索用时 46 毫秒
1.
2.
The chymotryptic fragment of bacteriorhodopsin, C-2 (residues 1-71), has been acetylated completely at its three lysines (residues 30, 40, and 41) by treatment with acetic anhydride. The triacetylated C-2 fragment is able to reassociate with fragment C-1 (residues 72-248) and the complex binds all-trans-retinal to form a native bacteriorhodopsin-like chromophore, which is essentially identical with that formed from fragments C-2 and C-1. Further, the kinetics and pH dependence of chromophore regeneration and the proton pumping of the reconstituted triacetylated C-2 and C-1 complex are indistinguishable from that of the unmodified C-2 and C-1 complex. However, the extent of regeneration of the chromophore from triacetylated C-2 and C-1 is less than that from fragments C-2 and C-1, suggesting that the acetylated C-2 fragment is less stable than unacetylated C-2 in the reconstitution medium. We conclude that the amino groups in Lys-30, -40, and -41 do not contribute to the stabilization of the folded bacteriorhodopsin structure and are not required for proton translocation.  相似文献   
3.
4.
5.
6.
7.
To study their role in the structure and function of bacteriorhodopsin, three prolines, presumed to be in the membrane-embedded alpha-helices, have been individually replaced as follows: Pro-50 and Pro-91 each by Gly and Ala and Pro-186 by Ala, Gly, and Val. The mutants of Pro-50 and Pro-91 all showed normal chromophore and proton pumping. However, the rates of regeneration of the chromophore in Pro-50----Ala, Pro-91----Ala and ----Gly with all-trans-retinal were about 30-fold slower than that in the wild-type, whereas the chromophore regeneration rate in Pro-50----Gly was 10-fold faster than in the wild-type. While, Pro-186----Ala regenerated the wild-type chromophore, the mutants Pro-186----Val and Pro-186----Gly showed large blue shifts (about 80 nm) in the chromophore regenerated with all-trans-retinal and showed no apparent dark-light adaptation. Pro-186----Gly first regenerated the wild-type chromophore with 13-cis-retinal which was thermally unstable and rapidly converted to the blue-shifted chromophore obtained with all-trans-retinal. High salt concentration restored the wild-type purple chromophore in the Pro-186----Gly mutant. Thus, in this mutant, the protein interconverts between two conformational states. Pro-186----Ala and Pro-186----Gly showed about 65%, whereas Pro-186----Val showed 10-20% of the normal proton pumping.  相似文献   
8.
To study their role in proton translocation by bacteriorhodopsin, 22 serine and threonine residues presumed to be located within and near the border of the transmembrane segments have been individually replaced by alanine or valine, respectively. Thr-89 was substituted by alanine, valine, and aspartic acid, and Ser-141 by alanine and cysteine. Most of the mutants showed essentially wild-type phenotype with regard to chromophore regeneration and absorption spectrum. However, replacement of Thr-89 by Val and of Ser-141 by Cys caused striking blue shifts of the chromophore by 100 and 80 nm, respectively. All substitutions of Thr-89 regenerated the chromophore at least 10-fold faster with 13-cis retinal than with all-trans retinal. The substitutions at positions 89, 90, and 141 also showed abnormal dark-light adaptation, suggesting interactions between these residues and the retinylidene chromophore. Proton pumping measurements revealed 60-75% activity for mutants of Thr-46, -89, -90, -205, and Ser-226, and about 20% for Ser-141----Cys, whereas the remaining mutants showed normal pumping. Kinetic studies of the photocycle and of proton release and uptake for mutants in which proton pumping was reduced revealed generally little alterations. The reduced activity in several of these mutants is most likely due to a lower percentage of all-trans retinal in the light-adapted state. In the mutants Thr-46----Val and Ser-226----Ala the decay of the photointer-mediate M was significantly accelerated, indicating an interaction between these residues and Asp-96 which reprotonates the Schiff base. Our results show that no single serine or threonine residue is obligatory for proton pumping.  相似文献   
9.
The retinylidene Schiff base counterion in bacteriorhodopsin   总被引:9,自引:0,他引:9  
Previous studies of bacteriorhodopsin have indicated interactions between Asp-85, Asp-212, Arg-82, and the retinylidene Schiff base. The counterion environment of the Schiff base has now been further investigated by using single and double mutants of the above amino acids. Chromophore regeneration from bacterioopsin proceeds to a normal extent in the presence of a single aspartate or glutamate residue at position 85 or 212, whereas replacement of both charged amino acids in the mutant Asp-85----Asn/Asp-212----Asn abolishes the binding of retinal. This indicates that a carboxylate group at either residue 85 or 212 is required as counterion for formation and for stabilization of the protonated Schiff base. Measurements of the pKa of the Schiff base reveal reductions of greater than 3.5 units for neutral single mutants of Asp-85 but only decreases of less than 1.2 units for corresponding substitutions of Asp-212, relative to the wild type. Substitutions of Asp-85 show large red shifts in the absorption spectrum that are partially reversible upon addition of anions, whereas mutants of Asp-212 display minor red shifts or blue shifts. We conclude, therefore, that Asp-85 is the retinylidene Schiff base counterion in wild-type bacteriorhodopsin. In the mutant Asp-85----Asn/Asp-212----Asn formation of a protonated Schiff base chromophore is restored in the presence of salts. The spectral properties of the double mutant are similar to those of the acid-purple form of bacteriorhodopsin. Upon addition of salts the folded structure of wild-type and mutant proteins can be stabilized at low pH in lipid/detergent micelles. The data indicate that exogenous anions serve as surrogate counterions to the protonated Schiff base, when the intrinsic counterions have been neutralized by mutation or by protonation.  相似文献   
10.
The transient absorption at 296 nm was part of the spectroscopic evidence that initiated the proposal that tyrosinate (Tyr-) is formed during, and important to, the photocycle of bacteriorhodopsin (bR). Recent evidence against such a proposal comes from the results of NMR, UV Raman as well as electron cryo-microscopic structural studies. This makes it credible to assign this absorption to a charge perturbation of the lowest energy absorption of one of the tryptophan (Trp) residues in bR. The transient absorption at 296 nm is examined for each of 8 tryptophan mutants in which Trp is substituted by phenylalanine or cysteine, which absorb at shorter wavelength. It is shown that while all go through the photocycle, all but Trp-182 mutant show this transient absorption. This strongly suggests the assignment of this absorption to a charge perturbaton of the lowest energy absorption of Trp-182 during the photocycle. The chemical identity of the perturbing charge(s) is briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号