首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2022年   2篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2014年   2篇
  2009年   1篇
  2007年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The protective effects of free polyamines (PAs) against salinity stress were investigated for pistachio seedlings (Pistacia vera cv. Badami-Zarand) in a controlled greenhouse. Seedlings were treated with 25, 50, 100 and 150 mM of salts including NaCl, CaCl2 and MgCl2. Foliar treatments of putrescine, spermidine (Spd) and spermine (Spm) (0.1 and 1 mM) were applied during the salinity period. Results showed that growth characteristics of pistachio seedlings decreased under salinity stress and the application of PAs efficiently reduced the adverse effects of salt stress. PAs reduced the severe effects of salt stress in pistachio seedlings neither by increasing the activities of peroxidase and ascorbate peroxidase nor by increasing the proline content but by increasing the activities of superoxide dismutase and catalase and decreasing the hydrogen peroxide (H2O2) activity. PAs treated seedlings showed a lower Na+:K+ ratio and Cl? in leaves suggesting the role of PAs in balancing the ion exchange and better Na+:K+ discrimination under salt stress condition. These results showed the promising potential use of PAs especially Spm and Spd for reducing the negative effects of salinity stress and improving the growth of pistachio seedlings.  相似文献   
2.
Real-time intelligent pattern recognition algorithm for surface EMG signals   总被引:1,自引:0,他引:1  

Background  

Electromyography (EMG) is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG) can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements.  相似文献   
3.
The molecular structure (hydrogen bonding, bond distances and angles), dipole moment and vibrational spectroscopic data [vibrational frequencies, IR and vibrational circular dichroism (VCD)] of cyclobutanone?HX (X?=?F, Cl) complexes were calculated using density functional theory (DFT) and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6–311G, 6–311G**, 6–311 + + G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2 and B3LYP levels with basis sets including diffuse functions. Surface potential energy calculations were carried out with scanning HCl and HF near the oxygen atom. The nonlinear hydrogen bonds of 1.81 Å and 175° for HCl and 1.71 Å and 161° for HF were calculated. In these complexes the C=O and H–X bonds participating in the hydrogen bond are elongated, while others bonds are compressed. The calculated vibrational spectra were interpreted and the band assignments reported are in excellent agreement with experimental IR spectra. The C=O stretching vibrational frequencies of the complexes show red shifts with respect to cyclobutanone.  相似文献   
4.
Journal of Applied Phycology - Lipids and eicosapentaenoic acid (EPA) compounds from Nannochloropsis oceanica biomass were extracted using a combination of ionic liquids (ILs) and...  相似文献   
5.
During tumor growth—when nutrient and anabolic demands are high—autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras‐driven tumors additionally invoke non‐autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well‐characterized malignant tumor model in Drosophila melanogaster. Micro‐computed X‐ray tomography and metabolic profiling reveal that RasV12; scrib −/− tumors grow 10‐fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, ‐motility, ‐feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.  相似文献   
6.
7.
The aim of this study was to determine if there is a seasonal variation in the widely used heart failure marker NT-proBNP. The study included all primary care requests for NT-proBNP in the county of Uppsala, Sweden, between January 2007 and December 2015. For seasonal variation, the NT-proBNP results for individual months were compared. The NT-proBNP values were highest in July to September, but there was also a minor peak in December–January. In conclusion, a seasonal periodicity for NT-proBNP was demonstrated in primary care patients. The data could be useful for practitioners for evaluation of NT-proBNP results and monitoring of patients with heart failure.  相似文献   
8.
Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages—two extremes of the polarization spectrum—to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn2+-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively.  相似文献   
9.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   
10.
Macrophages are the most abundant cells within the tumor stroma displaying noticeable plasticity, which allows them to perform several functions within the tumor microenvironment. Tumor-associated macrophages commonly refer to an alternative M2 phenotype, exhibiting anti-inflammatory and pro-tumoral effects. M2 cells are highly versatile and multi-tasking cells that directly influence multiple steps in tumor development, including cancer cell survival, proliferation, stemness, and invasiveness along with angiogenesis and immunosuppression. M2 cells perform these functions through critical interactions with cells related to tumor progression, including Th2 cells, cancer-associated fibroblasts, cancer cells, regulatory T cells (Tregs), and myeloid-derived suppressor cells. M2 cells also have negative cross-talks with tumor suppressor cells, including cytotoxic T cells and natural killer cells. Programed death-1 (PD-1) is one of the key receptors expressed in M2 cells that, upon interaction with its ligand PD-L1, plays cardinal roles for induction of immune evasion in cancer cells. In addition, M2 cells can neutralize the effects of the pro-inflammatory and anti-tumor M1 phenotype. Classically activated M1 cells express high levels of major histocompatibility complex molecules, and the cells are strong killers of cancer cells. Therefore, orchestrating M2 reprogramming toward an M1 phenotype would offer a promising approach for reversing the fate of tumor and promoting cancer regression. Macrophage switching toward an anti-inflammatory M1 phenotype could be used as an adjuvant with other approaches, including radiotherapy and immune checkpoint blockades, such as anti-PD-L1/PD-1 strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号