首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
  2009年   1篇
  2007年   2篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Molecular Biology Reports - Ionizing radiation (IR) causes biological effects either by directly damaging the molecules or by generating free radicals. Antioxidant mechanisms are believed to be...  相似文献   
2.
The Hsp90 chaperone has become the attractive pharmacological target to inhibit tumor cell proliferation. However, tumor cells can evolve with mechanisms to overcome Hsp90 inhibition. Using human neuroblastoma, we have investigated one such limitation. Here, we demonstrate that neuroblastoma cells overcome the interference of tumor suppressor p16INK4a in cell proliferation, which is due to its latent interaction with CDK4 and CDK6. Cells also displayed impedance to the pharmacological inhibition of cancer chaperone Hsp90 inhibition with respect to induced cytotoxicity. However, the p16INK4a knockdown has triggered the activation of cyclin-CDK6 axis and enhanced the cell proliferation. These cells are eventually sensitized to Hsp90 inhibition by activating the DNA damage response mediated through p53-p21WAF-1 axis and G1 cell cycle exit. While both CDK4 and CDK6 have exhibited low affinity to p16INK4a, CDK6 has exhibited high affinity to Hsp90. Destabilizing the CDK6 interaction with Hsp90 has prolonged G2/M cell cycle arrest fostering to premature cellular senescence. The senescence driven cells exhibited compromised metastatic potential both in vitro as well as in mice xenografts. Our study unravels that cancer cells can be adapted to the constitutive expression of tumor suppressors to overcome therapeutic interventions. Our findings display potential implication of Hsp90 inhibitors to overcome such adaptations.  相似文献   
3.
Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi‐infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2‐DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2‐D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI‐TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down‐regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.  相似文献   
4.
De novo fatty acid biosynthesis in humans is accomplished by a multidomain protein, the Type I fatty acid synthase (FAS). Although ubiquitously expressed in all tissues, fatty acid synthesis is not essential in normal healthy cells due to sufficient supply with fatty acids by the diet. However, FAS is overexpressed in cancer cells and correlates with tumor malignancy, which makes FAS an attractive selective therapeutic target in tumorigenesis. Herein, we present a crystal structure of the condensing part of murine FAS, highly homologous to human FAS, with octanoyl moieties covalently bound to the transferase (MAT—malonyl‐/acetyltransferase) and the condensation (KS—β‐ketoacyl synthase) domain. The MAT domain binds the octanoyl moiety in a novel (unique) conformation, which reflects the pronounced conformational dynamics of the substrate‐binding site responsible for the MAT substrate promiscuity. In contrast, the KS binding pocket just subtly adapts to the octanoyl moiety upon substrate binding. Besides the rigid domain structure, we found a positive cooperative effect in the substrate binding of the KS domain by a comprehensive enzyme kinetic study. These structural and mechanistic findings contribute significantly to our understanding of the mode of action of FAS and may guide future rational inhibitor designs.  相似文献   
5.

Background  

Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data.  相似文献   
6.
7.
8.
9.
D-3-Hydroxybutyrate dehydrogenase from Pseudomonas putida belongs to the family of short-chain dehydrogenases/reductases. We have determined X-ray structures of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas putida, which was recombinantly expressed in Escherichia coli, in three different crystal forms to resolutions between 1.9 and 2.1 A. The so-called substrate-binding loop (residues 187-210) was partially disordered in several subunits, in both the presence and absence of NAD(+). However, in two subunits, this loop was completely defined in an open conformation in the apoenzyme and in a closed conformation in the complex structure with NAD(+). Structural comparisons indicated that the loop moves as a rigid body by about 46 degrees . However, the two small alpha-helices (alphaFG1 and alphaFG2) of the loop also re-orientated slightly during the conformational change. Probably, the interactions of Val185, Thr187 and Leu189 with the cosubstrate induced the conformational change. A model of the binding mode of the substrate D-3-hydroxybutyrate indicated that the loop in the closed conformation, as a result of NAD(+) binding, is positioned competent for catalysis. Gln193 is the only residue of the substrate-binding loop that interacts directly with the substrate. A translation, libration and screw (TLS) analysis of the rigid body movement of the loop in the crystal showed significant librational displacements, describing the coordinated movement of the substrate-binding loop in the crystal. NAD(+) binding increased the flexibility of the substrate-binding loop and shifted the equilibrium between the open and closed forms towards the closed form. The finding that all NAD(+) -bound subunits are present in the closed form and all NAD(+) -free subunits in the open form indicates that the loop closure is induced by cosubstrate binding alone. This mechanism may contribute to the sequential binding of cosubstrate followed by substrate.  相似文献   
10.
Modularity is a fundamental property of megasynthases such as polyketide synthases (PKSs). In this study, we exploit the close resemblance between PKSs and animal fatty acid synthase (FAS) to re‐engineer animal FAS to probe the modularity of the FAS/PKS family. Guided by sequence and structural information, we truncate and dissect animal FAS into its components, and reassemble them to generate new PKS‐like modules as well as bimodular constructs. The novel re‐engineered modules resemble all four common types of PKSs and demonstrate that this approach can be a powerful tool to deliver products with higher catalytic efficiency. Our data exemplify the inherent plasticity and robustness of the overall FAS/PKS fold, and open new avenues to explore FAS‐based biosynthetic pathways for custom compound design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号