首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2010年   4篇
  2008年   1篇
  2006年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1968年   1篇
  1967年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
HIV-1 protease (PR) is a 99 amino acid protein responsible for proteolytic processing of the viral polyprotein – an essential step in the HIV-1 life cycle. Drug resistance mutations in PR that are selected during antiretroviral therapy lead to reduced efficacy of protease inhibitors (PI) including darunavir (DRV). To identify the structural mechanisms associated with the DRV resistance mutation L33F, we performed X-ray crystallographic studies with a multi-drug resistant HIV-1 protease isolate that contains the L33F mutation (MDR769 L33F). In contrast to other PR L33F DRV complexes, the structure of MDR769 L33F complexed with DRV reported here displays the protease flaps in an open conformation. The L33F mutation increases noncovalent interactions in the hydrophobic pocket of the PR compared to the wild-type (WT) structure. As a result, L33F appears to act as a molecular anchor, reducing the flexibility of the 30s loop (residues 29–35) and the 80s loop (residues 79–84). Molecular anchoring of the 30s and 80s loops leaves an open S1/S1′ subsite and distorts the conserved hydrogen-bonding network of DRV. These findings are consistent with previous reports despite structural differences with regards to flap conformation.  相似文献   
2.
3.
4.
Peters Plus syndrome is an autosomal recessive disorder characterized by anterior eye chamber defects, disproportionate short stature, developmental delay, and cleft lip and/or palate. It is caused by splice site mutations in what was thought to be a beta1,3-galactosyltransferase-like gene (B3GALTL). Recently, we and others found this gene to encode a beta1,3-glucosyltransferase involved in the synthesis of the disaccharide Glc-beta1,3-Fuc-Omicron-that occurs on thrombospondin type 1 repeats of many biologically important proteins. No functional tests have been performed to date on the presumed glycosylation defect in Peters Plus syndrome. We have established a sensitive immunopurification-mass spectrometry method, using multiple reaction monitoring, to analyze Omicron-fucosyl glycans. It was used to compare the reporter protein properdin from Peters Plus patients with that from control heterozygous relatives. In properdin from patients, we could not detect the Glc-beta1,3-Fuc-Omicron-disaccharide, and we only found Fuc-Omicron-at all four Omicron-fucosylation sites. In contrast, properdin from heterozygous relatives and a healthy volunteer carried the Glc-beta1,3-Fuc-Omicron-disaccharide. These data firmly establish Peters Plus syndrome as a new congenital disorder of glycosylation.  相似文献   
5.
Thrombospondin type 1 repeats (TSRs) are biologically important domains of extracellular proteins. They are modified with a unique Glcbeta1,3Fucalpha1-O-linked disaccharide on either serine or threonine residues. Here we identify the putative glycosyltransferase, B3GTL, as the beta1,3-glucosyltransferase involved in the biosynthesis of this disaccharide. This enzyme is conserved from Caenorhabditis elegans to man and shares 28% sequence identity with Fringe, the beta1,3-N-acetylglucosaminyltransferase that modifies O-linked fucosyl residues in proteins containing epidermal growth factor-like domains, such as Notch. beta1,3-Glucosyltransferase glucosylates properly folded TSR-fucose but not fucosylated epidermal growth factor-like domain or the non-fucosylated modules. Specifically, the glucose is added in a beta1,3-linkage to the fucose in TSR. The activity profiles of beta1,3-glucosyltransferase and protein O-fucosyltransferase 2, the enzyme that carries out the first step in TSR O-fucosylation, superimpose in endoplasmic reticulum subfractions obtained by density gradient centrifugation. Both enzymes are soluble proteins that efficiently modify properly folded TSR modules. The identification of the beta1,3-glucosyltransferase gene allows us to manipulate the formation of the rare Glcbeta1,3Fucalpha1 structure to investigate its biological function.  相似文献   
6.
GCSA-1, a monoclonal antibody raised against cysts generated in vitro was shown to be Giardia cyst-specific by immunoblot analysis and immunofluorescence. GCSA-1 recognized four polypeptides ranging from 29-45 kD present in the cyst wall. These antigens appeared within eight hours of exposure of trophozoites to encystation medium and were shown to be synthesized by encysting parasites by means of metabolic labelling with [35S]-cysteine. Trophozoites were not stained by the antibody. GCSA-1 also reacted with in vivo cysts obtained from faeces of infected humans, gerbils and mice. These data demonstrate that the determinants recognized by GCSA-1 are early cyst antigens which are developmentally regulated and conserved components of the cyst wall. The actual role of the antigens detected by GCSA-1 in encystation are unknown, but they represent a potential target for strategies directed at inhibiting this process.  相似文献   
7.
Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/β-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and β-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions.  相似文献   
8.
9.
We have cloned Gb(3) synthase, the key alpha1, 4-galactosyltransferase in globo-series glycosphingolipid (GSL) synthesis, via a phenotypic screen, which previously yielded iGb(3) synthase, the alpha1,3-galactosyltransferase required in isoglobo-series GSL (Keusch, J. J., Manzella, S. M., Nyame, K. A., Cummings, R. D., and Baenziger, J. U. (2000) J. Biol. Chem. 33). Both transferases act on lactosylceramide, Galbeta1,4Glcbeta1Cer (LacCer), to produce Gb(3) (Galalpha1,4LacCer) or iGb(3) (Galalpha1, 3LacCer), respectively. GalNAc can be added sequentially to either Gb(3) or iGb(3) yielding globoside and Forssman from Gb(3), and isogloboside and isoForssman from iGb(3). Gb(3) synthase is not homologous to iGb(3) synthase but shows 43% identity to a human alpha1,4GlcNAc transferase that transfers a UDP-sugar in an alpha1, 4-linkage to a beta-linked Gal found in mucin. Extensive homology (35% identity) is also present between Gb(3) synthase and genes in Drosophila melanogaster and Arabidopsis thaliana, supporting conserved expression of an alpha1,4-glycosyltransferase, possibly Gb(3) synthase, throughout evolution. The isolated Gb(3) synthase cDNA encodes a type II transmembrane glycosyltransferase of 360 amino acids. The highest tissue expression of Gb(3) synthase RNA is found in the kidney, mesenteric lymph node, spleen, and brain. Gb(3) glycolipid, also called P(k) antigen or CD77, is a known receptor for verotoxins. CHO cells that do not express Gb(3) and are resistant to verotoxin become susceptible to the toxin following transfection with Gb(3) synthase cDNA.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号