首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有11条查询结果,搜索用时 46 毫秒
1.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   
2.
The 3′→5′ exonuclease activity of highly purified large form of human DNA polymerase epsilon was studied. The activity removes mononucleotides from the 3′ end of an oligonucleotide with a non-processive mechanism and leaves 5′-terminal trinucleotide non-hydrolyzed. This is the case both with single-stranded oligonucleotides and with oligonucleotides annealed to complementary regions of M13DNA. However, the reaction rates with single-stranded oligonucleotides are at least ten-fold when compared to those with completely base-paired oligonucleotides. Conceivably, mismatched 3′ end of an oligonucleotide annealed to M13DNA is rapidly removed and the hydrolysis is slown down when double-stranded region is reached. The preferential removal of a non-complementary 3′ end and the non-processive mechanism are consistent with anticipated proofreading function. In addition to the 3′→5′ exonuclease activity, an 5′→3′ exonuclease activity is often present even in relatively highly purified DNA polymerase epsilon preparates suggesting that such an activity may be an essential com-ponent for the action of this enzymein vivo. Contrary to the 3′→5′ exonuclease activity, the 5′→3′ exonuclease is separable from the polymerase activity.  相似文献   
3.
When studying how HIV‐1 Nef can promote packaging of the proinflammatory transmembrane protease TACE (tumor necrosis factor‐α converting enzyme) into extracellular vesicles (EVs) we have revealed a novel tyrosine kinase‐regulated unconventional protein secretion (UPS) pathway for TACE. When TACE was expressed without its trafficking cofactor iRhom allosteric Hck activation by Nef triggered translocation of TACE into EVs. This process was insensitive to blocking of classical secretion by inhibiting endoplasmic reticulum (ER) to Golgi transport, and involved a distinct form of TACE devoid of normal glycosylation and incompletely processed for prodomain removal. Like most other examples of UPS this process was Golgi reassembly stacking protein (GRASP)‐dependent but was not associated with ER stress. These data indicate that Hck‐activated UPS provides an alternative pathway for TACE secretion that can bypass iRhom‐dependent ER to Golgi transfer, and suggest that tyrosine phosphorylation might have a more general role in regulating UPS.   相似文献   
4.
Kesti  Petri  Hiltunen  Minna  Strandberg  Ursula  Vesterinen  Jussi  Taipale  Sami  Kankaala  Paula 《Hydrobiologia》2022,849(4):967-984
Hydrobiologia - Many lakes in the northern hemisphere are browning due to increasing concentrations of terrestrial dissolved organic carbon (DOC). The consequences of lake browning to littoral...  相似文献   
5.
6.
We have determined the solution structure of epidermal growth factor receptor pathway substrate 8 (Eps8) L1 Src homology 3 (SH3) domain in complex with the PPVPNPDYEPIR peptide from the CD3ε cytoplasmic tail. Our structure reveals the distinct structural features that account for the unusual specificity of the Eps8 family SH3 domains for ligands containing a PxxDY motif instead of canonical PxxP ligands. The CD3ε peptide binds Eps8L1 SH3 in a class II orientation, but neither adopts a polyproline II helical conformation nor engages the first proline-binding pocket of the SH3 ligand binding interface. Ile531 of Eps8L1 SH3, instead of Tyr or Phe residues typically found in this position in SH3 domains, renders this hydrophobic pocket smaller and nonoptimal for binding to conventional PxxP peptides. A positively charged arginine at position 512 in the n-Src loop of Eps8L1 SH3 plays a key role in PxxDY motif recognition by forming a salt bridge to D7 of the CD3ε peptide. In addition, our structural model suggests a hydrogen bond between the hydroxyl group of the aromatic ring of Y8 and the carboxyl group of E496, thus explaining the critical role of the PxxDY motif tyrosine residue in binding to Eps8 family SH3. These finding have direct implications also for understanding the atypical binding specificity of the amino-terminal SH3 of the Nck family proteins.  相似文献   
7.
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same.  相似文献   
8.
DNA polymerase epsilon (Pol epsilon) is believed to play an essential catalytic role during eukaryotic DNA replication and is thought to participate in recombination and DNA repair. That Pol epsilon is essential for progression through S phase and for viability in budding and fission yeasts is a central element of support for that view. We show that the amino-terminal portion of budding yeast Pol epsilon (Pol2) containing all known DNA polymerase and exonuclease motifs is dispensable for DNA replication, DNA repair, and viability. However, the carboxy-terminal portion of Pol2 is both necessary and sufficient for viability. Finally, the viability of cells lacking Pol2 catalytic function does not require intact DNA replication or damage checkpoints.  相似文献   
9.
A basic idea of plant defences is that a plant should gain protection from its own defence. In addition, there is evidence that defence traits of the neighbouring plants can influence the degree of protection of an individual plant. These associational effects depend in part on the spatial scale of herbivore selectivity. A strong between-patch selectivity together with a weak within-patch selectivity leads to a situation where a palatable plant could avoid being grazed by growing in a patch with unpalatable plants, which is referred to as associational defence. Quite different associational effects will come about if the herbivore instead is unselective between patches and selective within a patch. We studied these effects in a manipulative experiment where we followed the food choice of fallow deer when they encountered two patches of overall different quality. One of the two patches consisted of pellets with low-tannin concentration in seven out of eight buckets and with high concentration in the remaining bucket. The other patch instead had seven high- and one low-tannin bucket. We performed the experiment both with individuals one at a time and with a group of 16–17 deer. We found that the deer were unselective between patches, but selective within a patch, and that the single low-tannin bucket among seven high-tannin buckets was used more than a low-tannin bucket among other low-tannin buckets. This corresponds to a situation where a palatable plant that grows among unpalatable plants is attacked more than if it was growing among its own kind, and for this effect we suggest the term neighbour contrast susceptibility, which is the opposite of associational defence. We also found that the high-tannin bucket in the less defended patch was less used than the high-tannin buckets in the other patch, which corresponds to neighbour contrast defence. The neighbour contrast susceptibility was present both for individual and group foraging, but the strength of the effect was somewhat weaker for groups due to weaker within-patch selectivity.  相似文献   
10.
Recruitment of cellular signaling proteins by the CD3 polypeptides of the TCR complex mediates T cell activation. We have screened a human Src homology 3 (SH3) domain phage display library for proteins that can bind to the proline-rich region of CD3epsilon. This screening identified Eps8L1 (epidermal growth factor receptor pathway substrate 8-like 1) together with the N-terminal SH3 domain of Nck1 and Nck2 as its preferred SH3 partners. Studies with recombinant proteins confirmed strong binding of CD3epsilon to Eps8L1 and Nck SH3 domains. CD3epsilon bound well also to Eps8 and Eps8L3, and modestly to Eps8L2, but not detectably to other SH3 domains tested. Interestingly, binding of Nck and Eps8L1 SH3 domains was mapped to a PxxDY motif that shared its tyrosine residue (Y166) with the ITAM of CD3epsilon. Phosphorylation of this residue abolished binding of Eps/Nck SH3 domains in peptide spot filter assays, as well as in cells cotransfected with a dominantly active Lck kinase. TCR ligation-induced binding and phosphorylation-dependent loss of binding were also demonstrated between Eps8L1 and endogenous CD3epsilon in Jurkat T cells. Thus, phosphorylation of Y166 serves as a molecular switch during T cell activation that determines the capacity of CD3epsilon to interact with either SH3 or SH2 domain-containing proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号