首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1986年   1篇
排序方式: 共有14条查询结果,搜索用时 744 毫秒
1.
Predictions from two previously published models and a new model for the relative change in cuticular permeability with boiling point, octanol/air partition coefficient, and/or molar volume of a wide range of diffusants (not including ions and large hydrophilic compounds) are compared with each other and to experimental data sets not used for model parameterization. While the models work in a similar way for all cuticles for which data are available, it is not yet possible to predict in absolute terms the permeability of any cuticles for which no data are available-that is, while the slope of a plot representing the change in permeability with diffusant properties is predictable, the position of the linear relationship along the ordinate needs to be determined experimentally for each type of cuticle at or near the relevant temperature(s).  相似文献   
2.
This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.  相似文献   
3.
In grasses, leaf cells divide and expand within the sheaths of older leaves, where the micro-environment differs from the open atmosphere. By the time epidermal cells are displaced into the atmosphere, they must have a functional cuticle to minimize uncontrolled water loss. In the present study, gas chromatography and scanning electron microscopy were used to follow cuticular wax deposition along the growing leaf three of barley (Hordeum vulgare L.). 1-Hexacosanol (C26 alcohol) comprised more than 75% of extractable cuticular wax and was used as a marker for wax deposition. There was no detectable wax along the first 20 mm from the point of leaf insertion. Deposition started within the distal portion of the elongation zone (23–45 mm) and continued beyond the point of leaf emergence from the sheath of leaf two. The region where wax deposition commenced shifted towards more proximal (basal) positions when the point of leaf emergence was lowered by stripping back part of the sheath. When relative humidity in the shoot environment was elevated from 70% (standard growth conditions) to 92–96% for up to 4 days prior to analysis, wax deposition did not change significantly. The results show that cuticular waxes are deposited along the growing grass leaf independent of cell age or developmental stage. Instead, the reference point for wax deposition appears to be the point of emergence of cells into the atmosphere. The possibility of changes in relative humidity between enclosed and emerged leaf regions triggering wax deposition is discussed.  相似文献   
4.
The aim of the present study was to isolate clones of genes which are likely to be involved in wax deposition on barley leaves. Of particular interest were those genes which encode proteins that take part in the synthesis and further modification of very long chain fatty acids (VLCFAs), the precursors of waxes. Previously, it had been shown that wax deposition commences within a spatially well-defined developmental zone along the growing barley leaf (Richardson et al. in Planta 222:472–483, 2005). In the present study, a barley microarray approach was used to screen for candidate contig-sequences (www.barleybase.org) that are expressed particularly in those leaf zones where wax deposition occurs and which are expressed specifically within the epidermis, the site of wax synthesis. Candidate contigs were used to screen an established in-house cDNA library of barley. Six full-length coding sequences clones were isolated. Based on sequence homologies, three clones were related to Arabidopsis CER6/CUT1, and these clones were termed HvCUT1;1, HvCUT1;2 and HvCUT1;3. A fourth clone, which was related to Arabidopsis Fiddlehead (FDH), was termed HvFDH1;1. These clones are likely to be involved in synthesis of VLCFAs. A fifth and sixth clone were related to Arabidopsis CER1, and were termed HvCER1;1 and HvCER1;2. These clones are likely to be involved in the decarbonylation pathway of VLCFAs. Semi-quantitative RT-PCR confirmed microarray expression data. In addition, expression analyses at 10-mm resolution along the blade suggest that HvCUT1;1 (and possibly HvCUT1;2) and HvCER1;1 are involved in commencement of wax deposition during barley leaf epidermal cell development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or 14C-labelled benzoic acid ([14C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0–25 mm from the point of leaf insertion (POLI). Resistance—the inverse of permeance—to uptake of [14C] BA was determined for four leaf regions and was lowest in the region 10–20 mm above POLI. At 20–30 and 50–60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76–80 mm above POLI, resistance was as high as at 50–60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate.  相似文献   
6.
More and more studies on genetically modified plants are identifying parts of the genetic code with putative involvement in creating the cuticular barrier. Unfortunately, many of these studies suffer from the inadequacy of the chosen methods to quantify, in a reasonably unambiguous way, if and how the efficacy of the cuticular barrier is affected by the genetic change. A short overview of relevant findings is given and a more stringent experimental approach to quantifying effects on cuticular permeability in genetically modified plants proposed.  相似文献   
7.
The scale, mechanism, and physiological importance of cuticular transpiration were last reviewed in this journal 5 and 10 years ago. Progress in our basic understanding of the underlying processes and their physiological and structural determinants has remained frustratingly slow ever since. There have been major advances in the quantification of cuticular water permeability of stomata-bearing leaf and fruit surfaces and its dependence on leaf temperature in astomatous surfaces, as well as in our understanding of the respective roles of epicuticular and intracuticular waxes and molecular-scale aqueous pores in its physical control. However, understanding the properties that determine the thousand-fold differences between permeabilities of different cuticles remains a huge challenge. Molecular biology offers unique opportunities to elucidate the relationships between cuticular permeability and structure and chemical composition of cuticles, provided care is taken to quantify the effects of genetic manipulation on cuticular permeability by reliable experimental approaches.  相似文献   
8.
Evidence from 10 studies comparing angiosperm trees and 5 studies comparing conifers of differing shade‐tolerance was analysed. The number of intraphyletic comparisons in which the more shade‐tolerant species showed the greater relative increase of biomass in elevated CO2 was significantly higher than would be expected by chance alone. It is suggested that more shade‐tolerant species are inherently better disposed, in terms of plant architecture and partitioning of biomass and nitrogen, to utilise resources (light, water, nutrients) that are potentially limiting in elevated CO2 and that these traits are responsible for the interaction between shade‐tolerance and CO2 concentration. Compared with less shade‐tolerant angiosperm trees, more shade‐tolerant angiosperm species generally have a lower leaf area ratio in ambient CO2 and show a smaller relative reduction in elevated CO2. Furthermore, leaf nitrogen content is usually lower in more shade‐tolerant angiosperm species and tends to be more strongly reduced by elevated CO2 in those species. Within angiosperm trees, more shade‐tolerant species showed a stronger stimulation of net leaf photosynthetic rate in most experiments, but this trend was not significant.  相似文献   
9.
Cuticular water permeability and its physiological significance   总被引:27,自引:12,他引:15  
Cuticles act as solution-diffusion membranes for water transport.Diffusion in pores does not contribute to cuticular transpiration.An extensive literature survey of cuticular permeances (P) andminimum leaf conductances (gmin) to water is presented. Thetwo variables cannot be distinguished with most experimentaltechniques. Results from different experiments are in good agreementwith each other for some species, for example, Fagus sytvaticaL., but not for others, such as Picea abies (L.) Karst. In adata set of 313 values of P or gmin from 200 species, distributionsof results obtained with different techniques were found todiffer significantly. Likely reasons include water loss fromincompletely closed or incompletely sealed stomata, and thedependence of P on moisture content of the cuticle and on storagetime of isolated cuticles. Contrasting evidence for an interactionbetween cuticular transpiration and stomatal sensitivity toair humidity is presented. The occurrence of unusually highgmin in trees growing at the alpine treeline and its physiologicalsignificance are discussed. It is shown that gmin is of littlevalue as a predictor for drought resistance of crops, with thepossible exception of Sorghum bicolor L. Moench. Possible wateruptake from fog or dew across cuticles is considered briefly. Key words: Epidermal conductance, VPD-response, water absorption, waxes, winter desiccation  相似文献   
10.
Summary Using isolated cuticular membranes from ten woody and herbaceous plant species, permeance and diffusion coefficients for water were measured, and partition coefficients were calculated. The cuticular membranes of fruit had much higher permeance and diffusion coefficients than leaf cuticular membranes from either trees or herbs. Both diffusion and partition coefficients increased with increasing membrane thickness. Thin cuticles, therefore, tend to be better and more efficient water barriers than thick cuticles. We compared the diffusion coefficients and the water content of cuticles as calculated from transport measurements with those obtained from water vapor sorption. There is good to fair agreement for cuticular membranes with a low water content, but large discrepancies appear for polymer matrix membranes with high permeance. This is probably due to the fact that diffusion coefficients obtained from transport measurements on membranes with high permeance and water content are underestimated. Water permeabilities of polyethylene and polypropylene membranes are similar to those of leaf cuticular membranes. However, leaf cuticles have much lower diffusion coefficients and a much greater water content than these synthetic polymers. This suggests that cuticles are primarily mobility barriers as far as water transport is concerned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号