首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   8篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2008年   9篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   13篇
  2001年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
1.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
2.
DNA double strand break (DSB) causes many cytotoxic effects such as cellular lethality, somatic mutation, and carcinogenesis. Fidelity of DSB repair is a important factor that determines the quality of genomic stability. It is known that the most of DSBs are properly repaired on the earth, however, little is known whether those are rejoined at the same fidelity even under the space environment. One of the DSB repair pathway, homologous recombination (HR), allows the cells to repair their DSBs with error free. Therefore, the efficiency of HR is a good index to assess the fidelity of DSB repair. In order to clarify the effect of gravity stress on HR pathway, we established a cell line that can detect a site-specific DNA repair via HR. The cells carrying a reporter construct for HR were incubated under hypergravity condition after induction of site specific DSB. Our preliminary results suggest that the gravity stress may affect the HR efficiency.  相似文献   
3.
4.
5.
Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.  相似文献   
6.
7.
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   
8.
Complement C7 is one of the components of membrane attack complex (MAC) generated by the terminal complement cascade. C7 protein is polymorphic and most of its polymorphisms have been identified using isoelectric focusing (IEF), which detects protein charge differences. To date, the molecular bases of the polymorphisms detected by IEF have not been determined. In this paper, we describe the structural bases of two C7 IEF-detected polymorphisms, C7*3 and C7*4, both of which are common in Asian populations. C7*3 resulted from substitution of cysteine (Cys) at amino acid residue 106 by charged arginine (Arg; C106R), while charged lysine (Lys) at amino acid residue 398 was replaced by neutral glutamine (Gln; K398Q) in C7*4. As C7*3 is hypomorphic, it is important to study its possible associations with diseases such as immunological disorders and infections. We present genetic bases for this C7 polymorphism, which we determined using polymerase chain reaction (PCR)-based genotyping, a simple and accurate method suitable for large-scale studies.  相似文献   
9.
A thermodynamic analysis of the interaction of 125I-labeled human chorionic gonadotropin (IhCG) with two of its monoclonal antibodies (MAbs) was carried out. The dissociation profile of IhCG-MAb complex conforms to a two-step model. vant Hoff enthalpies were calculated with the K(A) (equilibrium constant) values obtained from dissociation at different temperatures. Free energy and entropy changes were calculated using the standard equations. DeltaH values for one of the MAbs, viz. VM7 were favorable at temperatures beyond 30 degrees C. Interestingly, the DeltaS values were also favorable at all temperatures. In the case of MAb VM4a, however, the interaction throughout the temperature range was driven by large favorable entropic contributions, indicating the importance of hydrophobic interaction in the binding of this MAb to hCG. The energetics of the interaction of these two monoclonals with hCG is discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号