首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2007年   2篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1/ mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1/ mice exhibit impaired glucose tolerance whereas vdac3/ mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1//vdac3/) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance.  相似文献   
2.
Mitochondrial outer membrane permeability is conferred by a family of porin proteins. Mitochondrial porins conduct small molecules and constitute one component of the permeability transition pore that opens in response to apoptotic signals. Because mitochondrial porins have significant roles in diverse cellular processes including regulation of mitochondrial ATP and calcium flux, we sought to determine their importance in learning and synaptic plasticity in mice. We show that fear conditioning and spatial learning are disrupted in porin-deficient mice. Electrophysiological recordings of porin-deficient hippocampal slices reveal deficits in long and short term synaptic plasticity. Inhibition of the mitochondrial permeability transition pore by cyclosporin A in wild-type hippocampal slices reproduces the electrophysiological phenotype of porin-deficient mice. These results demonstrate a dynamic functional role for mitochondrial porins and the permeability transition pore in learning and synaptic plasticity.  相似文献   
3.
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1(-/-) mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1(-/-) mice exhibit impaired glucose tolerance whereas vdac3(-/-) mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1(-/-)/vdac3(-/-)) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号