首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   8篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  1991年   1篇
排序方式: 共有41条查询结果,搜索用时 562 毫秒
1.
Protein tyrosine kinases (PTKs) play an important role in T cell development and activation. In vitro and in vivo defects, resulting in variable deficiencies in thymic development and in T cell antigen receptor (TCR) signal transduction, in PTKs have been shown. ZAP70, one of those PTKs, is a 70-kDa tyrosine phosphoprotein and associates with the ζ chain and undergoes tyrosine phosphorylation following TCR stimulation. It is expressed in T and natural killer (NK) cells. Several mutations were shown to lead to an autosomal recessive form of severe combined immunodeficiency disease (SCID).  相似文献   
2.
3.
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.  相似文献   
4.
5.
6.
7.
8.
The aim of this study was to evaluate the lipid peroxidation, nitric oxide (NO), and free radical scavenging enzyme activities in erythrocytes of zinc (Zn)-deficient rats and to investigate the relationship among these parameters in either group. Sixteen male rats with a weight of 40-50 g were used for the experiment. The rats were divided into control (n = 8) and Zn-deficient groups. At the end of the experiment, the animals were anesthetized with ketamine-HCl (Ketalar, 20 mg/kg(-1), i.p.), and the blood was collected by cardiac puncture after thoracotomy. Blood samples were collected in vacutainer tubes without and with K(3)-EDTA as anticoagulant. Erythrocyte catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GRD), glutathione-S-transferase (GST), superoxide dismutase (SOD) activities, total (enzymatic plus nonenzymatic) superoxide scavenger activity (TSSA), nonenzymatic superoxide scavenger activity (NSSA), antioxidant potential (AOP), and serum zinc (Zn) values in the Zn-deficient group were significantly lower than those of the control group, whereas NO and malondialdehyde (MDA) levels were significantly higher than those of the control group. The results show that Zn deficiency causes a decrease in antioxidant defense system and an increase in oxidative stress in erythrocyte of rats.  相似文献   
9.
10.
Obesity is a complex disease caused by both genetics and environmental factors. Melanocortin-4 receptor (MC4R) (MIM 155541) gene polymorphisms were reported to be the cause of monogenic obesity in humans. We studied three polymorphisms (Val50Met, Val103Ile, and Ser58Cys) and a mutation (Asn274Ser) of the MC4R gene in 203 obese patients and in 110 healthy subjects in the Turkish population. A high incidence of Val103Ile and Val50Met polymorphisms as well as the Asn274Ser mutation was found in the obese patients, whereas no significant correlation was found regarding the Ser58Cys polymorphism. We conclude that there is a concordance between the polymorphisms (Val103Ile, Val50Met, Ser58Cys) that were first studied in the Turkish population with obesity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号