首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   6篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
The Na,K-ATPase is of major importance for active ion transport across the sarcolemma and thus for electrical as well as contractile function of the myocardium. Furthermore, it is receptor for digitalis glycosides. In human studies of the regulatory aspects of myocardial Na,K-ATPase concentration a major problem has been to obtain tissue samples. Methodological accomplishments in quantification of myocardial Na,K-ATPase using vanadate facilitated 3H-ouabain binding to intact samples have, however, made it possible to obtain reliable measurements on human myocardial necropsies obtained at autopsy as well as on biopsies of a wet weight of only 1–2 mg obtained during heart catheterisation. However, access to the ultimately, normal, vital myocardial tissue has come from the heart transplantation programs, through which myocardial samples from cardiovascular healthy organ donors have become available. In the present paper we evaluate the various values reported for normal human myocardial Na,K-ATPase concentration, its regulation in heart disease and the association with digitalization. Normal myocardial Na,K-ATPase concentration level is found to be 700 pmol/g wet weight. No major variations were found between or within the walls of the heart ventricles. During the first few years of life a marked decrease in myocardial Na,K-ATPase concentration is followed by a stable level obtained in early adulthood and normally maintained throughout life. In patients with enlarged cardiac x-ray silhouette a significant positive, linear correlation between left ventricular ejection fraction (EF) and Na,K-ATPase concentration was established. A maximum reduction in Na,K-ATPase concentration of 89% was obtained when EF was reduced to 20%. Generally, heart failure associated with heart dilatation, myocardial hypertrophy as well as ischaemic heart disease is associated with reductions in myocardial Na,K-ATPase concentration of around 25%. During digoxin treatment of heart failure patients a further reduction in functional myocardial Na,K-ATPase concentration of 15% has been found. Thus, the total reduction in functional myocardial Na,K-ATPase concentration in digitalised heart failure patients may well be of the magnitude 40%. In conclusion, it has become possible to quantify human myocardial Na,K-ATPase in health and disease. Revealed reductions are in heart failure of importance for contractile function, generation of arrhythmia and for digoxin treatment.  相似文献   
2.
A highly sensitive fluorimetric assay using 3-O-methylfluorescein phosphate as substrate was used in the determination of K+-dependent phosphatase activity in preparations of rat skeletal muscle. The gastrocnemius muscle was chosen because of mixed fibre composition. Crude, detergent treated homogenate was used so as to avoid loss of activity during purification. K+-dependent phosphatase activities in the range 0.19–0.37 μmol · (g wet weight)−1 · min−1 were obtained, the value decreasing with age and K+-deficiency. Complete inhibition of the K+-dependent phosphatase was obtained with 10−3 M ouabain. Using a KSCN-extracted muscle enzyme the intimate relation between K+-dependent phosphatase activity and (Na+ + K+)-activated ATP hydrolysis could be demonstrated. A molecular activity of 620 min−1 was estimated from simultaneous determination of K+-dependent phosphatase activity and [3H]ouabain binding capacity using the partially purified enzyme preparation. The corresponding enzyme concentration in the crude homogenates was calculated and corresponded well with the number of [3H]ouabain binding sites measured in intact muscles or biopsies hereof.  相似文献   
3.
The α2-macroglobulin receptor was recently purified from rat liver and human placenta. Three different monoclonal antibodies have now been raised against the human receptor and expression of the 440-kDa receptor protein is demonstrated in human placenta, fibroblasts, liver, and monocytes by immunoblot analysis. Flow cytometric studies showed that anti-α2-macroglobulin receptor monoclonal antibodies bind to 90–100% of the blood monocyte population and not to other blood cells. This defines the α2-macroglobulin receptor as a monocyte differentiation antigen, different from any of the classified leucocyte cluster determinants. Electron microscopic gold immunocytochemistry revealed the subcellular distribution of the receptor in human cultured monocytes and fibroblasts. In these cells, 18–33% of the gold particles were found on the outside of the plasma membrane, and in fibroblasts, especially, in coated invaginations. The intracellular receptors were mainly distributed in vesicles and tubular structures.  相似文献   
4.

Aim

To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice.

Methods

Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology.

Results

Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups.

Conclusions/Interpretation

The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.  相似文献   
5.
The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein that is thought to play an active role during cancer cell invasion and metastasis. We have expressed a truncated soluble form of human uPAR using its native signal peptide in stably transfected Drosophila Schneider 2 (S2) cells. This recombinant product, denoted suPAR (residues 1–283), is secreted in high quantities in serum-free medium and can be isolated in very high purity. Characterization by SDS–PAGE and mass spectrometry reveals that suPAR produced in this system carries a uniform glycosylation composed of biantennary carbohydrates. In contrast, suPAR produced in stably transfected Chinese hamster ovary (CHO) cells carries predominantly complex-type glycosylation and exhibits in addition a site-specific microheterogeneity of the individual N-linked carbohydrates. Measurement of binding kinetics for the interaction with uPA by surface plasmon resonance reveals that S2-produced suPAR exhibits binding properties similar to those of suPAR produced by CHO cells. By site-directed mutagenesis we have furthermore removed the five potential N-linked glycosylation-sites either individually or in various combinations and studied the effect thereof on secretion and ligand-binding. Only suPAR completely deprived of N-linked glycosylation exhibits an impaired level of secretion. All the other mutants showed comparable secretion levels and retained the ligand-binding properties of suPAR-wt. In conclusion, stable expression of suPAR in Drosophila S2 cells offers a convenient and attractive method for the large scale production of homogeneous preparations of several uPAR mutants, which may be required for future attempts to solve the three-dimensional structure of uPAR by X-ray crystallography.  相似文献   
6.
The equatorial diffraction pattern of tendon collagen fibres was measured during short successive exposures at different lengths using a double focusing X-ray synchrotron radiation camera with film and with an area detector. Similarly, patterns from thin fibres from premature rats were recorded. The patterns unambiguously illustrate the relationship between fibre crystallinity and the age of the animal. Further, the results indicate that in the initial part of the linear region of the stiffness-versus-length curve, the collagen fibres are characterized by a quasihexagonal arrangement of collagen molecules, whereas at the end of this region, the molecular arrangement becomes hexagonal.  相似文献   
7.
Background aimsAdoptive transfer of tumor-specific lymphocytes is a promising strategy in the treatment of cancer. We conducted intratumoral administration of an allogeneic irradiated continuous T-cell line (C-Cure 709) expressing an HLA-A2-restricted MART-1-specific T-cell receptor (TCR) into HLA-A2+ melanoma patients. The C-Cure 709 cell line is cytotoxic against MART-1+ HLA-A2+ melanoma cell lines and secretes several immune stimulatory cytokines upon stimulation.MethodsAnti-tumor immune responses against the commonly expressed tumor antigen (Ag) MART-1 were longitudinally analyzed in peripheral blood by fluorescence-activated cell sorting (FACS) before and after intratumoral injection of C-Cure 709.ResultsNo treatment-induced increase in Ag-specific T-cell frequencies was observed in peripheral blood, and the phenotype of MART-1-specific T cells was very stable during the treatment. Interestingly, despite a very stable frequency of MART-1-specific T cells over the course of treatment, clonotype mapping revealed that the response was in fact highly diverse and dynamic, with new clonotypes emerging during treatment. Only a few clonotypes were recurrently detected in consecutive samples. One MART-1-specific T-cell clone disappearing from peripheral blood was later detected in a metastatic lesion.ConclusionsSequence analyzes of the CDR3 region revealed conserved structural characteristics in the MART-1-specific TCR used by T-cell clones.  相似文献   
8.
Leaves of C(4) grasses (such as maize [Zea mays], sugarcane [Saccharum officinarum], and sorghum [Sorghum bicolor]) form a classical Kranz leaf anatomy. Unlike C(3) plants, where photosynthetic CO(2) fixation proceeds in the mesophyll (M), the fixation process in C(4) plants is distributed between two cell types, the M cell and the bundle sheath (BS) cell. Here, we develop a C(4) genome-scale model (C4GEM) for the investigation of flux distribution in M and BS cells during C(4) photosynthesis. C4GEM, to our knowledge, is the first large-scale metabolic model that encapsulates metabolic interactions between two different cell types. C4GEM is based on the Arabidopsis (Arabidopsis thaliana) model (AraGEM) but has been extended by adding reactions and transporters responsible to represent three different C(4) subtypes (NADP-ME [for malic enzyme], NAD-ME, and phosphoenolpyruvate carboxykinase). C4GEM has been validated for its ability to synthesize 47 biomass components and consists of 1,588 unique reactions, 1,755 metabolites, 83 interorganelle transporters, and 29 external transporters (including transport through plasmodesmata). Reactions in the common C(4) model have been associated with well-annotated C(4) species (NADP-ME subtypes): 3,557 genes in sorghum, 11,623 genes in maize, and 3,881 genes in sugarcane. The number of essential reactions not assigned to genes is 131, 135, and 156 in sorghum, maize, and sugarcane, respectively. Flux balance analysis was used to assess the metabolic activity in M and BS cells during C(4) photosynthesis. Our simulations were consistent with chloroplast proteomic studies, and C4GEM predicted the classical C(4) photosynthesis pathway and its major effect in organelle function in M and BS. The model also highlights differences in metabolic activities around photosystem I and photosystem II for three different C(4) subtypes. Effects of CO(2) leakage were also explored. C4GEM is a viable framework for in silico analysis of cell cooperation between M and BS cells during photosynthesis and can be used to explore C(4) plant metabolism.  相似文献   
9.
We assessed the hypothesis that the epinephrine surge present during sepsis accelerates aerobic glycolysis and lactate production by increasing activity of skeletal muscle Na(+)-K(+)-ATPase. Healthy volunteers received an intravenous bolus of endotoxin or placebo in a randomized order on two different days. Endotoxemia induced a response resembling sepsis. Endotoxemia increased plasma epinephrine to a maximum at t = 2 h of 0.7 +/- 0.1 vs. 0.3 +/- 0.1 nmol/l (P < 0.05, n = 6-7). Endotoxemia reduced plasma K(+) reaching a nadir at t = 5 h of 3.3 +/- 0.1 vs. 3.8 +/- 0.1 mmol/l (P < 0.01, n = 6-7), followed by an increase to placebo level at t = 7-8 h. During the declining plasma K(+), a relative accumulation of K(+) was seen reaching a maximum at t = 6 h of 8.7 +/- 3.8 mmol/leg (P < 0.05). Plasma lactate increased to a maximum at t = 1 h of 2.5 +/- 0.5 vs. 0.9 +/- 0.1 mmol/l (P < 0.05, n = 8) in association with increased release of lactate from the legs. These changes were not associated with hypoperfusion or hypoxia. During the first 24 h after endotoxin infusion, renal K(+) excretion was 27 +/- 7 mmol, i.e., 58% higher than after placebo. Combination of the well-known stimulatory effect of catecholamines on skeletal muscle Na(+)-K(+)-ATPase activity, with the present confirmation of an expected Na(+)-K(+)- ATPase-induced decline in plasma K(+), suggests that the increased lactate release was due to increased Na(+)-K(+)-ATPase activity, supporting our hypothesis. Thus increased lactate levels in acutely and severely ill patients should not be managed only from the point of view that it reflects hypoxia.  相似文献   
10.
Via cytoplasmic signal transduction pathways, cytokines induce a variety of biological responses and modulate the outcome of inflammatory diseases and malignancies. Crohn's disease is a chronic inflammatory bowel disease of unknown etiology. Perturbation of the intestinal cytokine homeostasis is believed to play a pivotal role, but the pathogenesis of Crohn's disease is not fully understood. Here, we study intestinal T cells from Crohn's disease and healthy volunteers. We show that STAT3 and STAT4 are constitutively activated in Crohn's patients but not in healthy volunteers. The activation is specific, because other STAT proteins are not constitutively activated. Furthermore, the STAT3 regulated protein, SOCS3, is also constitutively expressed in Crohn's patients but not in healthy volunteers. Taken together, these data provide evidence of abnormal STAT/SOCS signaling in Crohn's disease. This aberrant activation, so far noted only in malignant cells, establish a new critical approach for better understanding the immunopathogenesis of Crohn's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号