首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9166篇
  免费   940篇
  国内免费   6篇
  2022年   56篇
  2021年   92篇
  2020年   65篇
  2019年   89篇
  2018年   104篇
  2017年   112篇
  2016年   169篇
  2015年   310篇
  2014年   319篇
  2013年   452篇
  2012年   605篇
  2011年   564篇
  2010年   358篇
  2009年   361篇
  2008年   556篇
  2007年   569篇
  2006年   519篇
  2005年   525篇
  2004年   509篇
  2003年   477篇
  2002年   401篇
  2001年   136篇
  2000年   139篇
  1999年   129篇
  1998年   125篇
  1997年   107篇
  1996年   104篇
  1995年   85篇
  1994年   78篇
  1993年   100篇
  1992年   101篇
  1991年   84篇
  1990年   85篇
  1989年   90篇
  1988年   87篇
  1987年   79篇
  1986年   65篇
  1985年   69篇
  1984年   78篇
  1983年   70篇
  1982年   70篇
  1981年   61篇
  1980年   70篇
  1979年   69篇
  1978年   51篇
  1976年   48篇
  1975年   43篇
  1974年   66篇
  1973年   51篇
  1972年   47篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
2.
3.
4.
5.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
6.
Solid-state 15N NMR of oriented lipid bilayer bound gramicidin A'   总被引:6,自引:0,他引:6  
Highly oriented samples of lipid and gramicidin A' (8:1 molar ratio) have been prepared with the samples extensively hydrated (approximately 70% water v/w). These preparations have been shown to be completely in a bilayer phase with a transition temperature of 28 degrees C, and evidence is presented indicating that the gramicidin is in the channel conformation. An estimate of the disorder in the alignment of the bilayers parallel with the glass plates used to align the bilayers can be made from the asymmetry of the nuclear magnetic resonances (NMR). Such an analysis indicates a maximal range of disorder of +/- 3 degrees. Uniformly 15N-labeled gramicidin has been biosynthesized by Bacillus brevis grown in a media containing 15N-labeled Escherichia coli cells as the only nitrogen source. When prepared with labeled gramicidin, the oriented samples result in high-resolution 15N NMR spectra showing 12 resonances for the 20 nitrogen sites of the polypeptide. The frequency of the three major multiple resonance peaks has been interpreted to yield the approximate orientation of the N-H bonds in the peptide linkages with respect to the magnetic field. These bond orientations are only partially consistent with the extant structural models of gramicidin.  相似文献   
7.
8.
Summary Clonal populations were isolated from the mouse mammary cell line, COMMA-D, by transfection with a dominant-selectable gene, pSV2Neo, which confers resistance to the antibiotic, G418. Seven of twenty-four clones isolated retained the ability of the parental line to repopulate cleared mammary fat pads in vivo as ductal-alveolar hyperplasias. Two sublines designated CDNR2 and CDNR4 retained hyperplastic growth potential after multiple passages in vitro with low incidence of tumor formation. A third subpopulation, CDNR1, contained a single integration site for the pSV2Neo plasmid indicating a bonafide clonal origin for this subline. CDNR1 cells displayed heterogeneous growth phenotypes in vivo including hyperplasia, adenocarcinoma, and bone formation. Functional differentiation of CDNR1 cells organized as alveolarlike structures in vivo or on floating collagen gels in vitro was observed as determined by immunoperoxidase staining for the milk-specific protein, casein. Overall, the results indicate that a subset of cells from the COMMA-D cell line may be functionally analogous to stem cells existing in the mammary gland. Supported by NCI research grants CA-38650, CA-33369, CA-39017, and CA-25215.  相似文献   
9.
10.
Three cis-acting alleles (gra-10, gra-5, and amyR2) of the Bacillus subtilis amyR promoter locus each cause catabolite repression-resistance of amyE-encoded alpha-amylase synthesis. The gra-10, gra-5, and amyR2 alleles were transferred from the chromosomes of their respective hosts to a plasmid carrying the amyR1-amyE+ gene by the process of gene conversion which is carried out during transformation of competent B. subtilis by plasmid clones carrying homologous DNA. The cloned amyR promoter regions containing the gra-10 and gra-5 mutations were shown to confer catabolite repression-resistance in cis to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 indicator gene when subcloned into the promoter-probe plasmid pPL603B. Implications concerning both the regulation of amyR utilization and the process of gene conversion in B. subtilis are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号