首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8483篇
  免费   850篇
  国内免费   6篇
  2022年   51篇
  2021年   83篇
  2020年   63篇
  2019年   85篇
  2018年   103篇
  2017年   106篇
  2016年   165篇
  2015年   299篇
  2014年   303篇
  2013年   409篇
  2012年   562篇
  2011年   530篇
  2010年   333篇
  2009年   323篇
  2008年   527篇
  2007年   543篇
  2006年   478篇
  2005年   500篇
  2004年   464篇
  2003年   443篇
  2002年   373篇
  2001年   100篇
  2000年   92篇
  1999年   105篇
  1998年   117篇
  1997年   95篇
  1996年   95篇
  1995年   78篇
  1994年   65篇
  1993年   76篇
  1992年   103篇
  1991年   77篇
  1990年   70篇
  1989年   82篇
  1988年   86篇
  1987年   64篇
  1986年   58篇
  1985年   74篇
  1984年   76篇
  1983年   65篇
  1982年   73篇
  1981年   67篇
  1980年   70篇
  1979年   69篇
  1978年   49篇
  1977年   46篇
  1976年   47篇
  1975年   44篇
  1974年   60篇
  1973年   49篇
排序方式: 共有9339条查询结果,搜索用时 15 毫秒
1.
The goal of this study was to develop a new implantable transducer for measuring anterior cruciate ligament (ACL) graft tension postoperatively in patients who have undergone ACL reconstructive surgery. A unique approach was taken of integrating the transducer into a femoral fixation device. To devise a practical in vivo calibration protocol for the fixation device transducer (FDT), several hypotheses were investigated: (1) The use of a cable versus the actual graft as the means for applying load to the FDT during calibration has no significant effect on the accuracy of the FDT tension measurements; (2) the number of flexion angles at which the device is calibrated has no significant effect on the accuracy of the FDT measurements; (3) the friction between the graft and femoral tunnel has no significant effect on measurement accuracy. To provide data for testing these hypotheses, the FDT was first calibrated with both a cable and a graft over the full range of flexion. Then graft tension was measured simultaneously with both the FDT on the femoral side and load cells, which were connected to the graft on the tibial side, as five cadaver knees were loaded externally. Measurements were made with both standard and overdrilled tunnels. The error in the FDT tension measurements was the difference between the graft tension measured by the FDT and the load cells. Results of the statistical analyses showed that neither the means of applying the calibration load, the number of flexion angles used for calibration, nor the tunnel size had a significant effect on the accuracy of the FDT. Thus a cable may be used instead of the graft to transmit loads to the FDT during calibration, thus simplifying the procedure. Accurate calibration requires data from just three flexion angles of 0, 45, and 90 deg and a curve fit to obtain a calibration curve over a continuous range of flexion within the limits of this angle group. Since friction did not adversely affect the measurement accuracy of the FDT, the femoral tunnel can be drilled to match the diameter of the graft and does not need to be overdrilled. Following these procedures, the error in measuring graft tension with the FDT averages less than 10 percent relative to a full-scale load of 257 N.  相似文献   
2.
3.
4.
5.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
6.
7.
Summary Clonal populations were isolated from the mouse mammary cell line, COMMA-D, by transfection with a dominant-selectable gene, pSV2Neo, which confers resistance to the antibiotic, G418. Seven of twenty-four clones isolated retained the ability of the parental line to repopulate cleared mammary fat pads in vivo as ductal-alveolar hyperplasias. Two sublines designated CDNR2 and CDNR4 retained hyperplastic growth potential after multiple passages in vitro with low incidence of tumor formation. A third subpopulation, CDNR1, contained a single integration site for the pSV2Neo plasmid indicating a bonafide clonal origin for this subline. CDNR1 cells displayed heterogeneous growth phenotypes in vivo including hyperplasia, adenocarcinoma, and bone formation. Functional differentiation of CDNR1 cells organized as alveolarlike structures in vivo or on floating collagen gels in vitro was observed as determined by immunoperoxidase staining for the milk-specific protein, casein. Overall, the results indicate that a subset of cells from the COMMA-D cell line may be functionally analogous to stem cells existing in the mammary gland. Supported by NCI research grants CA-38650, CA-33369, CA-39017, and CA-25215.  相似文献   
8.
9.
10.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号