首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
2.
The effect of minocycline on nerve regeneration was studied in a rat model of acute sciatic nerve injury, in which the injury was caused by resection and reimplantation of the right sciatic nerve. Immunohistochemical and molecular biological methods, as well as morphometric and electron microscopic techniques, were used. Compared with uninjured and PBS-treated injured nerves, the minocycline-treated injured nerve showed: (i) a decrease in macrophage recruitment and activation, probably resulting from inhibition of blood-brain-barrier break-down via reduced MMP2 and MMP9 induction, inhibition of revascularization via additional reduction of VEGF induction, and inhibition of inducible NO synthase (iNOS) induction; (ii) reduced activation of phagocytic Schwann cells, probably by inhibition of iNOS, MMP2 and MMP9 expression; (iii) a slowed Wallerian degeneration; and subsequently, (iv) a diminished nerve regeneration. Macrophages, especially their function in the removal of cellular debris and formation of a microenvironment beneficial for nerve regeneration, are strongly implicated in constructive events after nerve injuries. Therefore, we suggest that additional research into optimizing minocycline intervention for treatment of neurodegenerative diseases is needed before further clinical trials are performed.  相似文献   
3.
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL) – a proteolytic peptide fraction – were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry.  相似文献   
4.
Nitric oxide (NO), a biomolecule with major cytotoxic potency, is generated by NO synthases (NOS) utilizing l-arginine as substrate and citrulline is formed as a "side product." In brain tissue, citrulline is considered to be produced exclusively by NOS, due to the incomplete urea cycle in the brain. We aimed to characterize NOS activity by citrulline immunostaining in different cell types of the brain under in situ conditions and in slice and culture experiments. NOS-positive neurons and activated microglial cells were the most prominent citrulline-positive structures. Lack of citrulline immunoreaction in neurons of nNOS knockout mice emphasizes the dependency of citrulline positivity on NOS activity, and likewise there was no citrulline staining after application of the NOS inhibitors 7-nitroindazole and NIL. Interestingly, only a portion of NOS-containing neurons costained for citrulline. The inhibition of argininosuccinate synthetase by alpha-methyl-dl-aspartate increased the number of citrulline-positive cells, apparently due to reduction of the turnover rate of citrulline. Cells positive for NOS but negative for citrulline may indicate that the enzyme is either not activated or inhibited by cellular control mechanisms. The fact that not all citrulline-positive cells were NOS positive may be explained by an insufficient detection sensitivity or by disparate sites of citrulline production and recycling. The present results show that citrulline immunocytochemistry offers a viable and convenient means for studying NOS activity at the single-cell level to elicit its posttranslational control under physiological and pathophysiological conditions.  相似文献   
5.
Nitric oxide synthase (NOS) converts L-arginine as a substrate to form nitric oxide and the "by-product" citrulline. To characterize NOS activity in the nervous tissue at the single-cell level, citrulline immunostaining is considered to be a suitable means of working on the principle that in brain tissue, due to the incomplete urea cycle, citrulline is produced exclusively by NOS. This assumption is correct for free citrulline but it does not consider the conversion of arginine to citrulline residues of proteins by the calcium-dependent peptidylarginine deiminase (PAD). Using a polyclonal antiserum against citrulline we observed in cerebellar cell cultures immunopositivity in a few, mostly NOS-positive, neurons, in activated microglia, and in oligodendroglia (which under control conditions are in doubt to be able to express NOS), but not in astroglia. Treatment with the excitotoxin kainate substantially enhanced the staining intensity for citrulline in neurons and glial cells. To distinguish between free (NOS-related) and protein-bound (PAD-related) citrulline we blocked NOS activity by 7-nitroindazole or L-N5-(1-iminoethyl)lysine. The results provide evidence that citrulline immunolabeling results partly from PAD-mediated protein citrullination, enhanced pathophysiologically under stimulated conditions by exposure to kainate. Our immunocytochemical observations were corroborated by Western blot analysis showing several bands of citrulline-positive proteins, whose number and staining intensity depended on kainate treatment and calcium ions.  相似文献   
6.
Tachycardia may cause substantial molecular and ultrastructural alterations in cardiac tissue. The underlying pathophysiology has not been fully explored. The purpose of this study was (I) to validate a three-dimensional in vitro pacing model, (II) to examine the effect of rapid pacing on mitochondrial function in intact cells, and (III) to evaluate the involvement of L-type-channel-mediated calcium influx in alterations of mitochondria in cardiomyocytes during rapid pacing. In vitro differentiated cardiomyocytes from P19 cells that formed embryoid bodies were paced for 24 h with 0.6 and 2.0 Hz. Pacing at 2.0 Hz increased mRNA expression and phosphorylation of ERK1/2 and caused cellular hypertrophy, indicated by increased protein/DNA ratio, and oxidative stress measured as loss of cellular thiols. Rapid pacing additionally provoked structural alterations of mitochondria. All these changes are known to occur in vivo during atrial fibrillation. The structural alterations of mitochondria were accompanied by limitation of ATP production as evidenced by decreased endogenous respiration in combination with decreased ATP levels in intact cells. Inhibition of calcium inward current with verapamil protected against hypertrophic response and oxidative stress. Verapamil ameliorated morphological changes and dysfunction of mitochondria. In conclusion, rapid pacing-dependent changes in calcium inward current via L-type channels mediate both oxidative stress and mitochondrial dysfunction. The in vitro pacing model presented here reflects changes occurring during tachycardia and, thus, allows functional analyses of the signaling pathways involved.  相似文献   
7.
Fansa H  Keilhoff G  Wolf G  Schneider W 《Plastic and reconstructive surgery》2001,107(2):485-94; discussion 495-6
Bioengineering is considered to be the laboratory-based alternative to human autografts and allografts. It ought to provide "custom-made organs" cultured from patient's material. Venous grafts and acellular muscle grafts support axonal regeneration only to a certain extent because of the lack of viable Schwann cells in the graft. We created a biologic nerve graft in the rat sciatic nerve model by implanting cultured Schwann cells into veins and acellular gracilis muscles, respectively. Autologous nerve grafts and veins and acellular muscle grafts without Schwann cells served as controls. After 6 and 12 weeks, regeneration was assessed clinically, histologically, and morphometrically. The polymerase chain reaction analvsis showed that the implanted Schwann cells remained within all the grafts. The best regeneration was seen in the control; after 12 weeks the number of axons was increased significantly compared with the other grafts. A good regeneration was noted in the muscle-Schwann cell group, whereas regeneration in both of the venous grafts and the muscle grafts without Schwann cells was impaired. The muscle-Schwann cell graft showed a systematic and organized regeneration including a proper orientation of regenerated fibers. The venous grafts with Schwann cells showed less fibrous tissue and disorganization than the veins without Schwann cells, but failed to show an excellent regeneration. This might be attributed to the lack of endoneural-tube-like components serving as scaffold for the sprouting axon. Although the conventional nerve graft remains the gold standard, the implantation of Schwann cells into an acellular muscle provides a biologic graft with basal lamina tubes as pathways for regenerating axons and the positive effects of Schwann cells producing neurotrophic and neurotropic factors, and thus, supporting axonal regeneration.  相似文献   
8.
9.
Nitric oxide (NO) affects fatty acid synthesis and biogenesis of fatty acid consuming mitochondria. However, whether NO generated by the endothelial NO synthase isoform (eNOS) has significant impact on the synthesis and deposition of fat in liver remained unclear. We analyzed the quantity and distribution of mitochondria and fat in liver of wild-type (WT) mice and mice lacking eNOS (eNOS-KO). The livers of eNOS-KO mice contained tenfold more fat close (zone 1) and twenty fold more distal (zone 3) to the artery. The fat was deposited as droplets co-localized with mitochondria. Additionally, the livers of eNOS-KO mice contained 1.5-fold more homogenously distributed glycogen. No difference in the quantity of mitochondria was found between liver homogenates of eNOS-KO mice and WT animals. Mitochondria from liver homogenates of eNOS-KO mice exhibited a higher ratio of citrate synthase (CS) and NADH-cytochrome c oxidoreductase (KI+III) activity. We conclude that lack of eNOS-derived NO stimulates citrate- and lipid synthesis in liver thus contributing to the development of overweight. In support of this view, more visceral fat and 70% higher body weight was determined in one year old eNOS-KO mice in comparison to WT animals.  相似文献   
10.
Bone marrow stromal cells (MSC) are multipotent stem cells that differentiate into cells of the mesodermal lineage. Although adult, their differentiation potential is remarkable, and they are able to transdifferentiate. Transdifferentiated cultivated rat MSC (tMSC) changed morphologically into cells resembling typical spindle-shaped Schwann cells (SC) with enhanced expression of LNGF receptor, Krox-20, CD104 and S100beta protein and decreased expression of bone morphogenetic protein receptor-1A compared to untreated rat MSC (rMSC). Transdifferentiation was reversible and repeatable. To evaluate the myelinating capacity, rMSC, tMSC, or SC cultured from male rats were grafted into an autologous muscle conduit bridging a 2-cm gap in the female rat sciatic nerve. The presence of the male-specific SRY gene (as revealed by PCR analysis) and S100 immunoreactivity of pre-labeled tMSC confirmed the presence of the implanted cells in the grafts. Three weeks after grafting, an appropriate regeneration was noted in the SC and in the tMSC groups, while regeneration in the rMSC group and in the control group without any cells was impaired. In contrast to SC, in some cases, single tMSC were able to myelinate more than one axon. Our findings demonstrate that it may be possible to differentiate MSC into therapeutically useful cells for clinical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号