首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   57篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   6篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1999年   6篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1993年   2篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1969年   4篇
  1966年   1篇
排序方式: 共有141条查询结果,搜索用时 78 毫秒
1.
A full-length rabbit cDNA of cardiac adriamycin responsive protein (CARP) has been cloned. It shows high levels of identity at the amino acid sequence level (>86%) with the rat, mouse and human homologues. CARP mRNA levels are highly regulated in adriamycin-cardiomyopathy in rabbits.  相似文献   
2.
3.
The accumulation of the cytoskeletal beta- and gamma-actin mRNAs was determined in a variety of mouse tissues and organs. The beta-isoform is always expressed in excess of the gamma-isoform. However, the molar ratio of beta- to gamma-actin mRNA varies from 1.7 in kidney and testis to 12 in sarcomeric muscle to 114 in liver. We conclude that, whereas the cytoskeletal beta- and gamma-actins are truly coexpressed, their mRNA levels are subject to differential regulation between different cell types. The human gamma-actin gene has been cloned and sequenced, and its chromosome location has been determined. The gene is located on human chromosome 17, unlike beta-actin which is on chromosome 7. Thus, if these genes are also unlinked in the mouse, the coexpression of the beta- and gamma-actin genes in rodent tissues cannot be determined by gene linkage. Comparison of the human beta- and gamma-actin genes reveals that noncoding sequences in the 5'-flanking region and in intron III have been conserved since the duplication that gave rise to these two genes. In contrast, there are sequences in intron III and the 3'-untranslated region which are not present in the beta-actin gene but are conserved between the human gamma-actin and the Xenopus borealis type 1 actin genes. Such conserved noncoding sequences may contribute to the coexpression of beta- and gamma-actin or to the unique regulation and function of the gamma-actin gene. Finally, we demonstrate that the human gamma-actin gene is expressed after introduction into mouse L cells and C2 myoblasts and that, upon fusion of C2 cells to form myotubes, the human gamma-actin gene is appropriately regulated.  相似文献   
4.
HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of beta-actin due to coding mutations in one of two beta-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional beta-actin gene but not following transfection of the functional gamma-actin gene. In gamma-actin gene-transfected substrains that have increased rates of gamma-actin synthesis, beta-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both beta- and gamma-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal beta-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.  相似文献   
5.
The transition from early (E) to late (L) histone gene expression in developing sea urchin (Strongylocentrotus purpuratus) embryos was examined for H2B, H3, and H4 mRNAs by in situ hybridization of class-specific probes. Hybridization patterns indicate that the shift from E to L mRNAs occurs gradually and simultaneously in all blastomeres. Thus, during the transition the ratio of L to E mRNAs is similar in most cells. This suggests that no sudden changes in histone composition occur in individual cells which might be related to alterations in gene expression associated with differentiation of cell lineages. Around the midpoint of the transition, clusters of cells progressively appear which contain little, if any, E or L histone mRNA. This modulation of expression is coordinated for the three late genes examined because most individual cells contain either high or low levels of all three mRNAs. At blastula stage these clusters of unlabeled cells appear to be randomly distributed throughout the embryo. Subsequently the unlabeled regions expand and are found predominantly in aboral ectoderm as these cells cease to divide. Thus, the L/E histone mRNA ratio is not differentially regulated in diverse cell lineages, and the major differences in total histone mRNA content among individual cells may be related to cell cycle and/or the cessation of division.  相似文献   
6.
7.
8.
9.
R H Shutt  L H Kedes 《Cell》1974,3(3):283-290
A qualitative assay for detection of histone mRNA sequences in nuclear RNA was developed using actinomycin D-CsCl gradients to separate histone DNA from bulk DNA by differences in buoyant density. A significant amount of RNA synthesized in vitro in isolated nuclei from early blastula stage sea urchin embryos hybridized coincident with the histone DNA satellite, and this hybridization was competed out by unlabeled “9S” polysomal RNA purified from embryos at the same stage of development. The biogenesis of these histone mRNA sequences appeared similar as observed during in vivo and in vitro synthesis. Nuclear RNA from embryos pulse labeled in vivo was found to lack histone sequences, suggesting a rapid exit time for these sequences from the nucleus. Attempts to study the exit of histone sequences from isolated nuclei labeled in vitro also suggested a rapid exit time for histone sequences. The histone sequences were synthesized to a much lesser extent in isolated nuclei from late blastula stage embryos, as anticipated from the much reduced amount of histone mRNA labeled on polysomes at this stage.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号