首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Genomic instability and a predisposition to cancer are hallmarks of Bloom syndrome, an autosomal recessive disease arising from mutations in the BLM gene. BLM is a RecQ helicase component of the BLM-Topo III α-RMI1-RMI2 (BTR) complex, which maintains chromosome stability at the spindle assembly checkpoint (SAC). Other members of the BTR complex include Topo IIIa, RMI1, and RMI2. All members of the BTR complex are essential for maintaining the stable genome. Interestingly, the BTR complex is posttranslationally modified upon SAC activation during mitosis, but its significance remains unknown. In this study, we show that two proteins that interact with BLM, RMI1 and RMI2, are phosphorylated upon SAC activation, and, like BLM, RMI1, and RMI2, are phosphorylated in an MPS1-dependent manner. An S112A mutant of RMI2 localized normally in cells and was found in SAC-induced coimmunoprecipitations of the BTR complex. However, in RMI2-depleted cells, an S112A mutant disrupted the mitotic arrest upon SAC activation. The failure of cells to maintain mitotic arrest, due to lack of phosphorylation at Ser-112, results in high genomic instability characterized by micronuclei, multiple nuclei, and a wide distribution of aberrantly segregating chromosomes. We found that the S112A mutant of RMI2 showed defects in redistribution between the nucleoplasm and nuclear matrix. The phosphorylation at Ser-112 of RMI2 is independent of BLM and is not required for the stability of the BTR complex, BLM focus formation, and chromatin targeting in response to replication stress. Overall, this study suggests that the phosphorylation of the BTR complex is essential to maintain a stable genome.  相似文献   
2.
PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species.  相似文献   
3.
Microbial community structure and population dynamics during spontaneous bamboo shoot fermentation for production of ‘soidon’ (indigenous fermented food) in North‐east India were studied using cultivation‐dependent and cultivation‐independent molecular approaches. Cultivation‐dependent analyses (PCR‐amplified ribosomal DNA restriction analysis and rRNA gene sequencing) and cultivation‐independent analyses (PCR‐DGGE, qPCR and Illumina amplicon sequencing) were conducted on the time series samples collected from three independent indigenous soidon fermentation batches. The current findings revealed three‐phase succession of autochthonous lactic acid bacteria to attain a stable ecosystem within 7 days natural fermentation of bamboo shoots. Weissella spp. (Weissella cibaria, uncultured Weissella ghanensis) and Lactococcus lactis subsp. cremoris predominated the early phase (1–2 days) which was joined by Leuconostoc citreum during the mid‐phase (3 days), while Lactobacillus brevis and Lactobacillus plantarum emerged and became dominant in the late phase (5–7 days) with concurrent disappearance of W. cibaria and L. lactis subsp. cremoris. Lactococcus lactis subsp. lactis and uncultured Lactobacillus acetotolerans were predominantly present throughout the fermentation with no visible dynamics. The above identified dominant bacterial species along with their dynamics can be effectively utilized for designing a starter culture for industrialization of soidon production. Our results showed that a more realistic view on the microbial ecology of soidon fermentation could be obtained by cultivation‐dependent studies complemented with cultivation‐independent molecular approaches. Moreover, the critical issues to be considered for reducing methodological biases while studying the microbial ecology of traditional food fermentation were also highlighted with this soidon fermentation model.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号