首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   444篇
  免费   25篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   4篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   15篇
  2015年   13篇
  2014年   21篇
  2013年   34篇
  2012年   24篇
  2011年   28篇
  2010年   16篇
  2009年   21篇
  2008年   29篇
  2007年   30篇
  2006年   35篇
  2005年   29篇
  2004年   30篇
  2003年   25篇
  2002年   24篇
  2001年   1篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有469条查询结果,搜索用时 15 毫秒
1.
The advent of social media expands our ability to transmit information and connect with others instantly, which enables us to behave as “social sensors.” Here, we studied concurrent bursty behavior of Twitter users during major sporting events to determine their function as social sensors. We show that the degree of concurrent bursts in tweets (posts) and retweets (re-posts) works as a strong indicator of winning or losing a game. More specifically, our simple tweet analysis of Japanese professional baseball games in 2013 revealed that social sensors can immediately react to positive and negative events through bursts of tweets, but that positive events are more likely to induce a subsequent burst of retweets. We confirm that these findings also hold true for tweets related to Major League Baseball games in 2015. Furthermore, we demonstrate active interactions among social sensors by constructing retweet networks during a baseball game. The resulting networks commonly exhibited user clusters depending on the baseball team, with a scale-free connectedness that is indicative of a substantial difference in user popularity as an information source. While previous studies have mainly focused on bursts of tweets as a simple indicator of a real-world event, the temporal correlation between tweets and retweets implies unique aspects of social sensors, offering new insights into human behavior in a highly connected world.  相似文献   
2.
In order to study the distribution of mitochondrial cytochromes P-450 in porcine adrenal glands, the glands of anesthetized pigs were fixed in situ. Polyclonal antibodies against two cytochromes P-450, i.e., C27 side-chain cleavage enzyme and 11 beta-hydroxylase, were used to study the distribution of these enzymes in cryosections of the adrenal cortex. Ultrathin cryosections were evaluated by both protein-A/gold/silver immunocytochemistry and immunoelectron microscopy using double labeling with protein-A/colloidal-gold. At light microscopy, the two cytochrome P-450 enzymes were found to be broadly distributed in both the fasciculata and glomerulosa zones of the adrenal cortex. Quantitative immunoelectron microscopy revealed that both enzymes were localized only in mitochondria, in which they were present on the inner aspects of the inner mitochondrial membrane. Both cytochromes P-450 were demonstrable in all of the mitochondria examined, and statistical evaluation of the ratios of the two enzymes present in individual mitochondria yielded a normal distribution curve. Since no evidence was found for the preferential localization of either enzyme in a special population of mitochondria, we conclude that all mitochondria of the adrenal cortex contain both enzymes. We discuss implications of these findings with respect to the regulation of steroidogenesis.  相似文献   
3.
Highly purified cytochrome P-450 11 beta-/18-hydroxylase and the electron carriers adrenodoxin and adrenodoxin reductase were prepared from porcine adrenal. When the enzyme was incubated with the electron carriers, 11-deoxycorticosterone (DOC) and NADPH, the following products were isolated and measured by HPLC: corticosterone, 18-hydroxy-11-deoxycorticosterone (18-hydroxyDOC), 18-hydroxycorticosterone and aldosterone. All of the DOC consumed by the enzyme can be accounted for by the formation of these four steroids. Aldosterone was identified by mass spectroscopy and by preparing [3H]aldosterone from [3H]corticosterone followed by recrystallization at constant specific activity after addition of authentic aldosterone. Corticosterone and 18-hydroxycorticosterone were also converted to aldosterone. Conversion of corticosterone and 18-hydroxycorticosterone to aldosterone required P-450, both electron carriers, NADPH and substrate. The reaction is inhibited by CO and metyrapone. Moreover, all three activities of the purified enzyme decline at the same rate when the enzyme is kept at room temperature for various periods of time and when the enzyme is treated with increasing concentrations of anti-11 beta-hydroxylase (IgG) before assay. It is concluded that cytochrome P-450 11 beta-/18-hydroxylase can convert DOC to aldosterone via corticosterone and 18-hydroxycorticosterone. The stoichiometry of this conversion was found to be 3 moles of NADPH, 3 moles of H+ and 3 moles of oxygen per mole of aldosterone produced.  相似文献   
4.
The intracellular K+ concentration and its change in mung bean[Vigna mungo (L.) Hepper] root tips were investigated non-invasivelywith 39K nuclear magnetic resonance spectroscopy using a membraneimpermeable shift reagent, dysprosium (III) tripolyphosphate[Dy(PPPi)7–2]. The K+ resonance was shifted to highermagnetic field in proportion to the concentration of the shiftreagent. In addition to a reference capillary peak for measuringthe K+ concentration, two well-resolved peaks (intra- and extracellularK+ resonances) were observed in the 39K NMR spectra of mungbean root tips. The intracellular K+ concentration was determinedto be 41 mM, which was similar to the value obtained by flamephotometry. When 20 mM KCl was added to the external medium,the intensity of the intracellular K+ resonance gradually increasedand the net K+ uptake rate was calculated to be 4.1 micromolesper gram fresh weight per hour. After removal of KCl from theperfusion medium, the intracellular K+ concentration considerablydecreased. With 31P NMR method, 2.5 mM Dy(PPPj)7–12 and20 mM KCl had little effect on the ATP level in the cells. Wehave indicated that the 39K NMR method can be used to determinethe K+ levels and net fluxes of the K+ transport in perfusedroot tips successively. (Received April 6, 1988; Accepted September 29, 1988)  相似文献   
5.
Two different protease genes were cloned fromRhodocyclus gelatinosa APR 3-2 inEscherichia coli HB 101/ with pBR329 or its derivatives. The recombinant plasmids designated as pRP100 and pRP300 contained 11.2 and 10.6 kb DNA fragments, respectively. The differences of both plasmids in restriction enzyme maps indicate that these plasmids contained different protease genes. DNA fragments coding for protease, 6.4 kb and 4.5 kb from pRP100 and pRP300, were subcloned into pRP329 and designated as pRP101 and pRP301, respectively. The two cloned proteases were excreted in culture medium ofE. coli, and ß-lactamase ofE. coli, which was originally localized in periplasmic space, was also excreted in the medium.  相似文献   
6.
A cholera-like enterotoxin was purified from Vibrio cholerae O139 strain AI-1841 isolated from a diarrheal patient in Bangladesh. Its characteristics were compared with that of cholera toxins (CTs) of classical strain 569B and El Tor strain KT25. Al-1841 produced as much toxin as O1 strains. The toxins were indistinguishable in terms of their migration profiles in conventional polyacrylamide gel disc electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectrofocusing as well as their affinity for hydroxyapatite. The skin permeability factor activity and the fluid accumulation induced in rabbit ileal loops of the toxin of AI-1841 were identical to those of the CTs. Three toxins equally reacted against anti-569B CT antiserum in Western blotting, and their B subunits formed a precipitin line against any anti-B subunit antiserum by double gel immunodiffusion. Anti-569B CTB antibody neutralized the three toxins in their PF activities and enterotoxicities. The amino acid sequence of 1841 toxin B subunit was identical with that of KT25 CTB, corresponding to the DNA sequence of ctxB from El Tor strains of the seventh pandemic. We concluded 1841 toxin was identical to CT of the seventh pandemic El Tor vibrios.  相似文献   
7.
The surface pressures of α-tocopherol analogs, fatty acids, and their mixtures were measured in their spread monolayers at an air—water interface. The surface pressure—area isotherms for the mixed monolayers of α-tocopherol and either stearic acid, oleic acid or linoleic acid deviated positively from those calculated on the basis of the additivity rule, and the magnitude depended on the length of the phytyl side chain in α-tocopherol and on the degree of unsaturation of the fatty acid chains. Lysosome membranes of mouse liver were stabilized by addition of α-tocopherol. A decrease in the length of the phytyl side chain in α-tocopherol reduced its ability to stabilize lysosome membranes. A good correlation was obtained between the extent of stabilizing activity of α-tocopherol analogs on lysosome membranes and the degree of positive deviation of the surface pressure for their mixtures with fatty acids.  相似文献   
8.
We studied the blocking mechanism of 5-hydroxydecanoate, a novel antiarrhythmic agent, on the ATP-sensitive K+ channel in the single ventricular myocytes using the inside-out patch clamp technique. The channel activity in response to 5-hydroxydecanoate varied with each membrane patch corresponding to the sensitivity to ATP. In this condition the exogenous application of cAMP or cAMP-dependent protein kinase (PKA) obviously recovered the ATP-sensitive K+ channel activity after channel deactivation. By contrast, in membrane patches exhibited low sensitivity to ATP, endogenous cAMP-dependent protein kinase inhibitor (PKI) depressed the channel activity and restored the inhibitory action of 5-hydroxydecanoate and ATP on the channel. These results suggest that PKA-PKI system is involved in the regulatory mechanism of gating activity of the ATP-sensitive K+ channel and the blocking action of 5-hydroxydecanoate and ATP appears to be exerted by potentiating the inhibitory action of PKI on the channel.  相似文献   
9.
The correlation between corticoidogenesis and Ca2+-influx in the cell was investigated using isolated rat or bovine adrenocortical cells. 1) ACTH-induced corticoidogenesis in both rat and bovine adrenocortical cells was enhanced in parallel with increasing concentration of external Ca2+. In the bovine cells but not in the rat cells, moreover, the marked stimulatory effect of external Ca2+ on the corticoidogenesis was observed despite the absence of ACTH. 2) Ca2+-influx and corticoidogenesis always occurred unitedly. 3) Verapamil markedly inhibited either corticoidogenesis or Ca2+-influx in response to ACTH. 4) The stimulatory effect of Ca2+ on corticoidogenesis was completely blocked by cycloheximide. It was therefore suggested that Ca2+ could regulate corticoidogenesis as a primary "second messenger" of ACTH through biosynthesis of so-called steroidogenic protein.  相似文献   
10.
Unwinding of the replication origin and loading of DNA helicases underlie the initiation of chromosomal replication. In Escherichia coli, the minimal origin oriC contains a duplex unwinding element (DUE) region and three (Left, Middle, and Right) regions that bind the initiator protein DnaA. The Left/Right regions bear a set of DnaA-binding sequences, constituting the Left/Right-DnaA subcomplexes, while the Middle region has a single DnaA-binding site, which stimulates formation of the Left/Right-DnaA subcomplexes. In addition, a DUE-flanking AT-cluster element (TATTAAAAAGAA) is located just outside of the minimal oriC region. The Left-DnaA subcomplex promotes unwinding of the flanking DUE exposing TT[A/G]T(T) sequences that then bind to the Left-DnaA subcomplex, stabilizing the unwound state required for DnaB helicase loading. However, the role of the Right-DnaA subcomplex is largely unclear. Here, we show that DUE unwinding by both the Left/Right-DnaA subcomplexes, but not the Left-DnaA subcomplex only, was stimulated by a DUE-terminal subregion flanking the AT-cluster. Consistently, we found the Right-DnaA subcomplex–bound single-stranded DUE and AT-cluster regions. In addition, the Left/Right-DnaA subcomplexes bound DnaB helicase independently. For only the Left-DnaA subcomplex, we show the AT-cluster was crucial for DnaB loading. The role of unwound DNA binding of the Right-DnaA subcomplex was further supported by in vivo data. Taken together, we propose a model in which the Right-DnaA subcomplex dynamically interacts with the unwound DUE, assisting in DUE unwinding and efficient loading of DnaB helicases, while in the absence of the Right-DnaA subcomplex, the AT-cluster assists in those processes, supporting robustness of replication initiation.

The initiation of bacterial DNA replication requires local duplex unwinding of the chromosomal replication origin oriC, which is regulated by highly ordered initiation complexes. In Escherichia coli, the initiation complex contains oriC, the ATP-bound form of the DnaA initiator protein (ATP–DnaA), and the DNA-bending protein IHF (Fig. 1, A and B), which promotes local unwinding of oriC (1, 2, 3, 4). Upon this oriC unwinding, two hexamers of DnaB helicases are bidirectionally loaded onto the resultant single-stranded (ss) region with the help of the DnaC helicase loader (Fig. 1B), leading to bidirectional chromosomal replication (5, 6, 7, 8). However, the fundamental mechanism underlying oriC-dependent bidirectional DnaB loading remains elusive.Open in a separate windowFigure 1Schematic structures of oriC, DnaA, and the initiation complexes. A, the overall structure of oriC. The minimal oriC region and the AT-cluster region are indicated. The sequence of the AT-cluster−DUE (duplex-unwinding element) region is also shown below. The DUE region (DUE; pale orange bars) contains three 13-mer repeats: L-DUE, M-DUE, and R-DUE. DnaA-binding motifs in M/R-DUE, TT(A/G)T(T), are indicated by red characters. The AT-cluster region (AT cluster; brown bars) is flanked by DUE outside of the minimal oriC. The DnaA-oligomerization region (DOR) consists of three subregions called Left-, Middle-, and Right-DOR. B, model for replication initiation. DnaA is shown as light brown (for domain I–III) and darkbrown (for domain IV) polygons (right panel). ATP–DnaA forms head-to-tail oligomers on the Left- and Right-DORs (left panel). The Middle-DOR (R2 box)-bound DnaA interacts with DnaA bound to the Left/Right-DORs using domain I, but not domain III, stimulating DnaA assembly. IHF, shown as purple hexagons, bends DNA >160° and supports DUE unwinding by the DnaA complexes. M/R-DUE regions are efficiently unwound. Unwound DUE is recruited to the Left-DnaA subcomplex and mainly binds to R1/R5M-bound DnaA molecules. The sites of ssDUE-binding B/H-motifs V211 and R245 of R1/R5M-bound DnaA molecules are indicated (pink). Two DnaB homohexamer helicases (light green) are recruited and loaded onto the ssDUE regions with the help of the DnaC helicase loader (cyan). ss, single stranded.The minimal oriC region consists of the duplex unwinding element (DUE) and the DnaA oligomerization region (DOR), which contains specific arrays of 9-mer DnaA-binding sites (DnaA boxes) with the consensus sequence TTA[T/A]NCACA (Fig. 1A) (3, 4). The DUE underlies the local unwinding and contains 13-mer AT-rich sequence repeats named L-, M-, and R-DUE (9). The M/R-DUE region includes TT[A/G]T(A) sequences with specific affinity for DnaA (10). In addition, a DUE-flanking AT-cluster (TATTAAAAAGAA) region resides just outside of the minimal oriC (Fig. 1A) (11). The DOR is divided into three subregions, the Left-, Middle-, and Right-DORs, where DnaA forms structurally distinct subcomplexes (Fig. 1A) (8, 12, 13, 14, 15, 16, 17). The Left-DOR contains high-affinity DnaA box R1, low-affinity boxes R5M, τ1−2, and I1-2, and an IHF-binding region (17, 18, 19, 20). The τ1 and IHF-binding regions partly overlap (17).In the presence of IHF, ATP–DnaA molecules cooperatively bind to R1, R5M, τ2, and I1-2 boxes in the Left-DOR, generating the Left-DnaA subcomplex (Fig. 1B) (8, 17). Along with IHF causing sharp DNA bending, the Left-DnaA subcomplex plays a leading role in DUE unwinding and subsequent DnaB loading. The Middle-DOR contains moderate-affinity DnaA box R2. Binding of DnaA to this box stimulates DnaA assembly in the Left- and Right-DORs using interaction by DnaA N-terminal domain (Fig. 1B; also see below) (8, 12, 14, 16, 21). The Right-DOR contains five boxes (C3-R4 boxes) and cooperative binding of ATP–DnaA molecules to these generates the Right-DnaA subcomplex (Fig. 1B) (12, 18). This subcomplex is not essential for DUE unwinding and plays a supportive role in DnaB loading (8, 15, 17). The Left-DnaA subcomplex interacts with DnaB helicase, and the Right-DnaA subcomplex has been suggested to play a similar role (Fig. 1B) (8, 13, 16).In the presence of ATP–DnaA, M- and R-DUE adjacent to the Left-DOR are predominant sites for in vitro DUE unwinding: unwinding of L-DUE is less efficient than unwinding of the other two (Fig. 1B) (9, 22, 23). Deletion of L-DUE or the whole DUE inhibits replication of oriC in vitro moderately or completely, respectively (23). A chromosomal oriC Δ(AT-cluster−L-DUE) mutant with an intact DOR, as well as deletion of Right-DOR, exhibits limited inhibition of replication initiation, whereas the synthetic mutant combining the two deletions exhibits severe inhibition of cell growth (24). These studies suggest that AT-cluster−L-DUE regions stimulate replication initiation in a manner concerted with Right-DOR, although the underlying mechanisms remain elusive.DnaA consists of four functional domains (Fig. 1B) (4, 25). Domain I supports weak domain I–domain I interaction and serves as a hub for interaction with various proteins such as DnaB helicase and DiaA, which stimulates ATP–DnaA assembly at oriC (26, 27, 28, 29, 30). Two or three domain I molecules of the oriC–DnaA subcomplex bind a single DnaB hexamer, forming a stable higher-order complex (7). Domain II is a flexible linker (28, 31). Domain III contains AAA+ (ATPase associated with various cellular activities) motifs essential for ATP/ADP binding, ATP hydrolysis, and DnaA–DnaA interactions in addition to specific sites for ssDUE binding and a second, weak interaction with DnaB helicase (1, 4, 8, 10, 19, 25, 32, 33, 34, 35). Domain IV bears a helix-turn-helix motif with specific affinity for the DnaA box (36).As in typical AAA+ proteins, a head-to-tail interaction underlies formation of ATP–DnaA pentamers on the DOR, where the AAA+ arginine-finger motif Arg285 recognizes ATP bound to the adjacent DnaA protomer, promoting cooperative ATP–DnaA binding (Fig. 1B) (19, 32). DnaA ssDUE-binding H/B-motifs (Val211 and Arg245) in domain III sustain stable unwinding by directly binding to the T-rich (upper) strand sequences TT[A/G]T(A) within the unwound M/R-DUE (Fig. 1B) (8, 10). Val211 residue is included in the initiator-specific motif of the AAA+ protein family (10). For DUE unwinding, ssDUE is recruited to the Left-DnaA subcomplex via DNA bending by IHF and directly interacts with H/B-motifs of DnaA assembled on Left-DOR, resulting in stable DUE unwinding competent for DnaB helicase loading; in particular, DnaA protomers bound to R1 and R5M boxes play a crucial role in the interaction with M/R-ssDUE (Fig. 1B) (8, 10, 17). Collectively, these mechanisms are termed ssDUE recruitment (4, 17, 37).Two DnaB helicases are thought to be loaded onto the upper and lower strands of the region including the AT-cluster and DUE, with the aid of interactions with DnaC and DnaA (Fig. 1B) (25, 38, 39). DnaC binding modulates the closed ring structure of DnaB hexamer into an open spiral form for entry of ssDNA (40, 41, 42, 43). Upon ssDUE loading of DnaB, DnaC is released from DnaB in a manner stimulated by interactions with ssDNA and DnaG primase (44, 45). Also, the Left- and Right-DnaA subcomplexes, which are oriented opposite to each other, could regulate bidirectional loading of DnaB helicases onto the ssDUE (Fig. 1B) (7, 8, 35). Similarly, recent works suggest that the origin complex structure is bidirectionally organized in both archaea and eukaryotes (146). In Saccharomyces cerevisiae, two origin recognition complexes containing AAA+ proteins bind to the replication origin region in opposite orientations; this, in turn, results in efficient loading of two replicative helicases, leading to head-to-head interactions in vitro (46). Consistent with this, origin recognition complex dimerization occurs in the origin region during the late M-G1 phase (47). The fundamental mechanism of bidirectional origin complexes might be widely conserved among species.In this study, we analyzed various mutants of oriC and DnaA in reconstituted systems to reveal the regulatory mechanisms underlying DUE unwinding and DnaB loading. The Right-DnaA subcomplex assisted in the unwinding of oriC, dependent upon an interaction with L-DUE, which is important for efficient loading of DnaB helicases. The AT-cluster region adjacent to the DUE promoted loading of DnaB helicase in the absence of the Right-DnaA subcomplex. Consistently, the ssDNA-binding activity of the Right-DnaA subcomplex sustained timely initiation of growing cells. These results indicate that DUE unwinding and efficient loading of DnaB helicases are sustained by concerted actions of the Left- and Right-DnaA subcomplexes. In addition, loading of DnaB helicases are sustained by multiple mechanisms that ensure robust replication initiation, although the complete mechanisms are required for precise timing of initiation during the cell cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号