首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5299篇
  免费   266篇
  国内免费   2篇
  2022年   24篇
  2021年   41篇
  2020年   25篇
  2019年   25篇
  2018年   46篇
  2017年   54篇
  2016年   77篇
  2015年   133篇
  2014年   159篇
  2013年   536篇
  2012年   282篇
  2011年   292篇
  2010年   185篇
  2009年   189篇
  2008年   281篇
  2007年   301篇
  2006年   285篇
  2005年   303篇
  2004年   337篇
  2003年   283篇
  2002年   286篇
  2001年   70篇
  2000年   75篇
  1999年   77篇
  1998年   60篇
  1997年   58篇
  1996年   45篇
  1995年   47篇
  1994年   50篇
  1993年   62篇
  1992年   66篇
  1991年   56篇
  1990年   43篇
  1989年   49篇
  1988年   43篇
  1987年   43篇
  1986年   52篇
  1985年   49篇
  1984年   44篇
  1983年   44篇
  1982年   47篇
  1981年   49篇
  1980年   44篇
  1979年   31篇
  1978年   30篇
  1977年   26篇
  1976年   34篇
  1975年   18篇
  1974年   22篇
  1973年   23篇
排序方式: 共有5567条查询结果,搜索用时 15 毫秒
1.
A 100-μl urine sample was chromatographed on a column packed with a strongly basic macroreticular anion-exchange resin (Diaion CDR-10, 5– μm diameter with a nominal 35% cross linkage). The elution was performed with a linear acetate gradient from 0 to 6.0 M at an average flow-rate of 0.72 ml/min and at an average pressure of 104 kg/cm2. The relative standard deviation of retention times and peak height was ± 4% or less. The properties of the macroreticular anion-exchange resin, the effect of the particle size, the pH of acetate buffers, and the effect of the flow-rate of the eluent on the separation were investigated. Thirty three components of urine were then resolved and named.  相似文献   
2.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
3.
4.
5.
Recombinant human serum albumin (rHSA) incorporating 2-[8-[N-(2-methylimidazolyl)]octanoyloxymethyl]-5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-o-pivalamido)phenylporphinatoiron(II)s (Fe(II)Ps) [rHSA-Fe(II)P] is a synthetic hemoprotein which can bind and release O(2) reversibly under physiological conditions (saline solution [NaCl]: 150 mM, pH 7.3) as do hemoglobin and myoglobin. However, the central ferrous ions of Fe(II)Ps are slowly oxidized to O(2)-inactive ferric forms. Based on the UV-vis. absorption spectroscopy, the majority of the autooxidized Fe(III)Ps in albumin are determined to be six-coordinate high-spin complexes with a proximal imidazole and a chloride anion, which show ligand-to-metal charge transfer (LMCT) absorption at 330 nm. Interestingly, photoirradiation of this LMCT band under an argon atmosphere led to reduction of the central ferric iron of Fe(III)P, allowing the revival of the O(2)-binding ability. The ratio of the photoreduction reached a maximum of 83%, which is probably due to the partial dissociation of the axial imidazole. The same photoirradiation under a CO atmosphere provides the corresponding carbonyl rHSA-Fe(II)P. Laser flash photolysis experiments revealed that the reduction was completed within 100 ns. The quantum yields (Phi) of these photoreductions were approximately 0.01.  相似文献   
6.
Serine acetyltransferase (SATase) (EC 2.3.1.30 [EC] ) catalyzes theformation of Oacetyl-L-serine (OAS) from L-serine in the presenceof acetyl-CoA. A novel assay method was developed for measuringthis enzyme activity in extracts from plant tissues. The assayconsists of a coupled system in which the OAS formed is convertedto cysteine by the addition of cysteine synthase (CSase) (EC4.2.99.8 [EC] ). Cysteine thus formed is determined colorimetricallyand serves as a measure for SATase activity. This method israpid, simple and sensitive, and can be readily adapted formeasurement of SATase activity in crude tissue extracts or homogenates. (Received January 14, 1987; Accepted April 27, 1987)  相似文献   
7.
Cellulose microfibril orientation patterns in thallus cellsof Chaetomorpha moniligera were studied, and the relationshipbetween the microfibril and the peripheral microtubule arrangementsduring cell-shape modification by colchicine was examined. Inthe cuttings from growing thalli, linearly arranged cylindricalcells developed into cask-shaped cells during 4–6 daysof culture at 27?C. In the cylindrical cells, microfibrils formingthe innermost portion of the wall were arranged alternatelyin longitudinal and transverse directions, but peripheral microtubuleswere always arranged only in a longitudinal direction. Thesefeatures were also noted in the cask-shaped cells. Colchicineat 10–3M and 3?10–3M accelerated both cell expansionand wall thickening with matrix deposition, but the directionsin which both microfibrils and microtubules were arranged werethe same as those of the cylindrical cells. These results indicatethat (1) the microfibril and microtubule arrangements of Chaetomorphaare not necessarily correlated, (2) changes in cell shape ofChaetomorpha are not necessarily accompanied by changes in thearrangement of cell-wall microfibrils, and (3) colchicine playsa role in the loosening and thickening of cell walls by enhancingmatrix deposition. (Received June 2, 1986; Accepted February 13, 1987)  相似文献   
8.
New insights into the evolution of the families of genes encoding immunoglobulins and T-cell receptors of rabbits (Oryctolagus cuniculus) have come from molecular genetic studies. In contrast to human and mouse, rabbits were shown to have two genes for the constant region of immunoglobulin light chains (C kappa 1 and C kappa 2 isotypes) and complex allelic variants of K1 (allotypes). Although K1 allotype protein sequences differed at up to 41% of the amino acid positions, 3' untranslated, 5', and 3' flanking regions were conserved, and in the coding regions 78-80% of the codons with differences had replacement changes. Proportions of silent changes and changes in noncoding regions were comparable. Thus, in spite of their markedly different protein sequences, the K1b4, b5, and b9 allotypes appeared to be products of allelic genes. Molecular genetic analyses suggested that they may have undergone rapid divergence after an ancestral K2-like gene duplicated. Some rabbits were found to have two similar T-cell receptor C beta genes as do humans and many strains of mice, but others appeared to have three different C beta. In addition, we found allotypic forms of C beta. Some of the C beta allotypic differences occurred at positions where analogous C kappa allotypic differences were found. We also found V beta in mouse and human that were more similar to rabbit V beta than closely linked rabbit genes were to each other. This contrasts with rabbit immunoglobulin VH gene sequences that reflect concerted evolution. The data suggested that T-cell receptor V beta genes duplicated prior to mammalian radiation.  相似文献   
9.
10.
Various patterns of mouse pancreatic proteinase activity bands were observed on agarose gel electrophoresis. Prt-1 a and Prt-1 b genes control the positive (PRT-1A) and negative (PRT-1B) expression of tryptic band V, respectively; Prt-2 a and Prt-2 b correspond to chymotryptic bands II (PRT-2A) and III (PRT-2B); Prt-3 a and Prt-3 b control the low (PRT-3A) and high (PRT-3B) tryptic activities of band IV; the Prt-1 and Prt-3 loci are closely linked on the same chromosome; Prt-6 a and Prt-6 b correspond to tryptic bands I (PRT-6A) and I (PRT-6B). Twenty-four laboratory strains from the United States showed the phenotype PRT-1A, PRT-3A, and PRT-2A. Of laboratory strains established in Europe, 6 showed PRT-1A, PRT-3A, and PRT-2A, and 10 had PRT-1B, PRT-3A, and PRT-2A bands. Most wild mice around the world and their descendants showed the phenotype PRT-1B, PRT-3B, and PRT-2A. Only the phenotype of M. m. brevirostris was PRT-1A, PRT-3A, and PRT-2A, which was the same as most laboratory inbred strains. PRT-2B was observed mainly in Japanese (M. m. molossinus) and Korean (M. m. yamashinai) wild mice. PRT-6B was detected only in Mus spicilegus and Mus caroli, but all other mice including wild populations and laboratory strains showed PRT-6A. New biochemical phenotypes such as PRT-2C and PRT-3C were also found in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号